© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a33
K11a33
K11a35
K11a35
K11a34
Knotscape
This page is passe. Go here instead!

   The Knot K11a34

Visit K11a34's page at Knotilus!

Acknowledgement

K11a34 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,12,19,11 X20,14,21,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 16 18 20 6 22 12 10

Alexander Polynomial: - t-4 + 5t-3 - 14t-2 + 25t-1 - 29 + 25t - 14t2 + 5t3 - t4

Conway Polynomial: 1 - 2z2 - 4z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a158, ...}

Determinant and Signature: {119, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 11 + 16q - 19q2 + 19q3 - 17q4 + 13q5 - 8q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a89, ...}

A2 (sl(3)) Invariant: q-8 - q-6 + 3q-4 + 3q2 - 5q4 + 2q6 - 3q8 + 2q12 - 2q14 + 4q16 - q18 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 5a-4 + 11a-4z2 + 8a-4z4 + 2a-4z6 - 7a-2 - 17a-2z2 - 15a-2z4 - 6a-2z6 - a-2z8 + 4 + 6z2 + 4z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + 2a-8z2 - 6a-8z4 + 4a-8z6 - 2a-7z + 5a-7z3 - 11a-7z5 + 7a-7z7 + a-6 + a-6z2 - 2a-6z4 - 7a-6z6 + 7a-6z8 - 7a-5z + 23a-5z3 - 25a-5z5 + 6a-5z7 + 4a-5z9 + 5a-4 - 20a-4z2 + 39a-4z4 - 37a-4z6 + 14a-4z8 + a-4z10 - 7a-3z + 19a-3z3 - 9a-3z5 - 9a-3z7 + 8a-3z9 + 7a-2 - 32a-2z2 + 53a-2z4 - 41a-2z6 + 12a-2z8 + a-2z10 - 3a-1z + 7a-1z3 - 4a-1z5 - 5a-1z7 + 4a-1z9 + 4 - 11z2 + 15z4 - 14z6 + 5z8 - az + 5az3 - 8az5 + 3az7 + 2a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         51 
j = 11        83  
j = 9       95   
j = 7      108    
j = 5     99     
j = 3    710      
j = 1   510       
j = -1  26        
j = -3 15         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 34]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 34]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7], 
 
>   X[16, 9, 17, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[6, 15, 7, 16], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 34]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 34]]
Out[5]=   
DTCode[4, 8, 14, 2, 16, 18, 20, 6, 22, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 34]][t]
Out[6]=   
       -4   5    14   25              2      3    4
-29 - t   + -- - -- + -- + 25 t - 14 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 34]][z]
Out[7]=   
       2      4      6    8
1 - 2 z  - 4 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 34], Knot[11, Alternating, 158]}
In[9]:=
{KnotDet[Knot[11, Alternating, 34]], KnotSignature[Knot[11, Alternating, 34]]}
Out[9]=   
{119, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 34]][q]
Out[10]=   
       -3   3    7              2       3       4       5      6      7    8
-11 + q   - -- + - + 16 q - 19 q  + 19 q  - 17 q  + 13 q  - 8 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 34], Knot[11, Alternating, 89]}
In[12]:=
A2Invariant[Knot[11, Alternating, 34]][q]
Out[12]=   
 -8    -6   3       2      4      6      8      12      14      16    18
q   - q   + -- + 3 q  - 5 q  + 2 q  - 3 q  + 2 q   - 2 q   + 4 q   - q   + 
             4
            q
 
     22    24
>   q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 34]][a, z]
Out[13]=   
                              2       2       2           4      4       4
     -6   5    7       2   2 z    11 z    17 z       4   z    8 z    15 z
4 - a   + -- - -- + 6 z  - ---- + ----- - ----- + 4 z  - -- + ---- - ----- + 
           4    2            6      4       2             6     4      2
          a    a            a      a       a             a     a      a
 
            6      6    8
     6   2 z    6 z    z
>   z  + ---- - ---- - --
           4      2     2
          a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 34]][a, z]
Out[14]=   
                                                             2    2       2
     -6   5    7    2 z   7 z   7 z   3 z             2   2 z    z    20 z
4 + a   + -- + -- - --- - --- - --- - --- - a z - 11 z  + ---- + -- - ----- - 
           4    2    7     5     3     a                    8     6     4
          a    a    a     a     a                          a     a     a
 
        2              3      3       3       3      3
    32 z       2  2   z    5 z    23 z    19 z    7 z         3       4
>   ----- + 2 a  z  - -- + ---- + ----- + ----- + ---- + 5 a z  + 15 z  - 
      2                9     7      5       3      a
     a                a     a      a       a
 
       4      4       4       4              5       5       5      5      5
    6 z    2 z    39 z    53 z       2  4   z    11 z    25 z    9 z    4 z
>   ---- - ---- + ----- + ----- - 3 a  z  + -- - ----- - ----- - ---- - ---- - 
      8      6      4       2                9     7       5       3     a
     a      a      a       a                a     a       a       a
 
                        6      6       6       6              7      7      7
         5       6   4 z    7 z    37 z    41 z     2  6   7 z    6 z    9 z
>   8 a z  - 14 z  + ---- - ---- - ----- - ----- + a  z  + ---- + ---- - ---- - 
                       8      6      4       2               7      5      3
                      a      a      a       a               a      a      a
 
       7                      8       8       8      9      9      9    10    10
    5 z         7      8   7 z    14 z    12 z    4 z    8 z    4 z    z     z
>   ---- + 3 a z  + 5 z  + ---- + ----- + ----- + ---- + ---- + ---- + --- + ---
     a                       6      4       2       5      3     a      4     2
                            a      a       a       a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 34]], Vassiliev[3][Knot[11, Alternating, 34]]}
Out[15]=   
{-2, -1}
In[16]:=
Kh[Knot[11, Alternating, 34]][q, t]
Out[16]=   
          3     1       2       1       5      2      6    5 q       3
10 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 10 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
       5        5  2       7  2      7  3      9  3      9  4      11  4
>   9 q  t + 9 q  t  + 10 q  t  + 8 q  t  + 9 q  t  + 5 q  t  + 8 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a34
K11a33
K11a33
K11a35
K11a35