© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a339
K11a339
K11a341
K11a341
K11a340
Knotscape
This page is passe. Go here instead!

   The Knot K11a340

Visit K11a340's page at Knotilus!

Acknowledgement

K11a340 as Morse Link
DrawMorseLink

PD Presentation: X6271 X14,4,15,3 X16,6,17,5 X20,8,21,7 X22,10,1,9 X18,12,19,11 X4,14,5,13 X2,16,3,15 X10,18,11,17 X12,20,13,19 X8,22,9,21

Gauss Code: {1, -8, 2, -7, 3, -1, 4, -11, 5, -9, 6, -10, 7, -2, 8, -3, 9, -6, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 14 16 20 22 18 4 2 10 12 8

Alexander Polynomial: 4t-3 - 11t-2 + 18t-1 - 21 + 18t - 11t2 + 4t3

Conway Polynomial: 1 + 10z2 + 13z4 + 4z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {87, 6}

Jones Polynomial: q3 - 2q4 + 5q5 - 8q6 + 12q7 - 13q8 + 14q9 - 13q10 + 9q11 - 6q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - q12 + 2q14 - q16 + 3q20 + 5q24 - q28 - q30 - 4q32 + q34 - q36 + q40 - q42

HOMFLY-PT Polynomial: - 2a-12z2 - a-12z4 - 4a-10 - 2a-10z2 + 2a-10z4 + a-10z6 + 5a-8 + 10a-8z2 + 8a-8z4 + 2a-8z6 + 4a-6z2 + 4a-6z4 + a-6z6

Kauffman Polynomial: - 2a-17z3 + a-17z5 + a-16z2 - 6a-16z4 + 3a-16z6 - 4a-15z + 10a-15z3 - 12a-15z5 + 5a-15z7 - 3a-14z2 + 10a-14z4 - 11a-14z6 + 5a-14z8 - 2a-13z + 12a-13z3 - 6a-13z5 - 2a-13z7 + 3a-13z9 - 2a-12z2 + 13a-12z4 - 12a-12z6 + 4a-12z8 + a-12z10 - 2a-11z + 10a-11z5 - 11a-11z7 + 5a-11z9 + 4a-10 - 17a-10z2 + 16a-10z4 - 9a-10z6 + 2a-10z8 + a-10z10 - 4a-9z + 4a-9z3 - 3a-9z5 - 2a-9z7 + 2a-9z9 + 5a-8 - 15a-8z2 + 15a-8z4 - 10a-8z6 + 3a-8z8 + 4a-7z3 - 6a-7z5 + 2a-7z7 + 4a-6z2 - 4a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {10, 30}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11340. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         41 
j = 23        52  
j = 21       84   
j = 19      65    
j = 17     78     
j = 15    56      
j = 13   37       
j = 11  25        
j = 9  3         
j = 712          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 340]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 340]]
Out[3]=   
PD[X[6, 2, 7, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[18, 12, 19, 11], X[4, 14, 5, 13], X[2, 16, 3, 15], 
 
>   X[10, 18, 11, 17], X[12, 20, 13, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 340]]
Out[4]=   
GaussCode[1, -8, 2, -7, 3, -1, 4, -11, 5, -9, 6, -10, 7, -2, 8, -3, 9, -6, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 340]]
Out[5]=   
DTCode[6, 14, 16, 20, 22, 18, 4, 2, 10, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 340]][t]
Out[6]=   
      4    11   18              2      3
-21 + -- - -- + -- + 18 t - 11 t  + 4 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 340]][z]
Out[7]=   
        2       4      6
1 + 10 z  + 13 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 340]}
In[9]:=
{KnotDet[Knot[11, Alternating, 340]], KnotSignature[Knot[11, Alternating, 340]]}
Out[9]=   
{87, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 340]][q]
Out[10]=   
 3      4      5      6       7       8       9       10      11      12
q  - 2 q  + 5 q  - 8 q  + 12 q  - 13 q  + 14 q  - 13 q   + 9 q   - 6 q   + 
 
       13    14
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 340]}
In[12]:=
A2Invariant[Knot[11, Alternating, 340]][q]
Out[12]=   
 10    12      14    16      20      24    28    30      32    34    36    40
q   - q   + 2 q   - q   + 3 q   + 5 q   - q   - q   - 4 q   + q   - q   + q   - 
 
     42
>   q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 340]][a, z]
Out[13]=   
              2      2       2      2    4       4      4      4    6       6
-4    5    2 z    2 z    10 z    4 z    z     2 z    8 z    4 z    z     2 z
--- + -- - ---- - ---- + ----- + ---- - --- + ---- + ---- + ---- + --- + ---- + 
 10    8    12     10      8       6     12    10      8      6     10     8
a     a    a      a       a       a     a     a       a      a     a      a
 
     6
    z
>   --
     6
    a
In[14]:=
Kauffman[Knot[11, Alternating, 340]][a, z]
Out[14]=   
                                    2       2      2       2       2      2
 4    5    4 z   2 z   2 z   4 z   z     3 z    2 z    17 z    15 z    4 z
--- + -- - --- - --- - --- - --- + --- - ---- - ---- - ----- - ----- + ---- - 
 10    8    15    13    11    9     16    14     12      10      8       6
a     a    a     a     a     a     a     a      a       a       a       a
 
       3       3       3      3      3      4       4       4       4       4
    2 z    10 z    12 z    4 z    4 z    6 z    10 z    13 z    16 z    15 z
>   ---- + ----- + ----- + ---- + ---- - ---- + ----- + ----- + ----- + ----- - 
     17      15      13      9      7     16      14      12      10      8
    a       a       a       a      a     a       a       a       a       a
 
       4    5        5      5       5      5      5      6       6       6
    4 z    z     12 z    6 z    10 z    3 z    6 z    3 z    11 z    12 z
>   ---- + --- - ----- - ---- + ----- - ---- - ---- + ---- - ----- - ----- - 
      6     17     15     13      11      9      7     16      14      12
     a     a      a      a       a       a      a     a       a       a
 
       6       6    6      7      7       7      7      7      8      8
    9 z    10 z    z    5 z    2 z    11 z    2 z    2 z    5 z    4 z
>   ---- - ----- + -- + ---- - ---- - ----- - ---- + ---- + ---- + ---- + 
     10      8      6    15     13      11      9      7     14     12
    a       a      a    a      a       a       a      a     a      a
 
       8      8      9      9      9    10    10
    2 z    3 z    3 z    5 z    2 z    z     z
>   ---- + ---- + ---- + ---- + ---- + --- + ---
     10      8     13     11      9     12    10
    a       a     a      a       a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 340]], Vassiliev[3][Knot[11, Alternating, 340]]}
Out[15]=   
{10, 30}
In[16]:=
Kh[Knot[11, Alternating, 340]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3      13  4
q  + q  + 2 q  t + 3 q  t  + 2 q   t  + 5 q   t  + 3 q   t  + 7 q   t  + 
 
       15  4      15  5      17  5      17  6      19  6      19  7
>   5 q   t  + 6 q   t  + 7 q   t  + 8 q   t  + 6 q   t  + 5 q   t  + 
 
       21  7      21  8      23  8      23  9      25  9    25  10
>   8 q   t  + 4 q   t  + 5 q   t  + 2 q   t  + 4 q   t  + q   t   + 
 
       27  10    29  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a340
K11a339
K11a339
K11a341
K11a341