© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a338
K11a338
K11a340
K11a340
K11a339
Knotscape
This page is passe. Go here instead!

   The Knot K11a339

Visit K11a339's page at Knotilus!

Acknowledgement

K11a339 as Morse Link
DrawMorseLink

PD Presentation: X6271 X14,4,15,3 X16,6,17,5 X20,8,21,7 X22,10,1,9 X18,12,19,11 X2,14,3,13 X4,16,5,15 X12,18,13,17 X10,20,11,19 X8,22,9,21

Gauss Code: {1, -7, 2, -8, 3, -1, 4, -11, 5, -10, 6, -9, 7, -2, 8, -3, 9, -6, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 14 16 20 22 18 2 4 12 10 8

Alexander Polynomial: 3t-3 - 7t-2 + 11t-1 - 13 + 11t - 7t2 + 3t3

Conway Polynomial: 1 + 10z2 + 11z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {K11n180, ...}

Determinant and Signature: {55, 6}

Jones Polynomial: q3 - q4 + 3q5 - 5q6 + 7q7 - 8q8 + 9q9 - 8q10 + 6q11 - 4q12 + 2q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 + 2q14 + q20 - q22 + 2q24 + q30 - q32 + q34 - q36 - q38 - q42

HOMFLY-PT Polynomial: - 2a-12 - 3a-12z2 - a-12z4 + 2a-10 + 5a-10z2 + 4a-10z4 + a-10z6 - a-8 + a-8z2 + 3a-8z4 + a-8z6 + 2a-6 + 7a-6z2 + 5a-6z4 + a-6z6

Kauffman Polynomial: a-17z - 3a-17z3 + a-17z5 + a-16z2 - 5a-16z4 + 2a-16z6 - 3a-15z + 8a-15z3 - 9a-15z5 + 3a-15z7 - 5a-14z2 + 13a-14z4 - 10a-14z6 + 3a-14z8 + a-13z3 + 7a-13z5 - 6a-13z7 + 2a-13z9 - 2a-12 + 7a-12z2 - 5a-12z4 + 6a-12z6 - 3a-12z8 + a-12z10 + 4a-11z - 19a-11z3 + 26a-11z5 - 13a-11z7 + 3a-11z9 - 2a-10 + 8a-10z2 - 19a-10z4 + 15a-10z6 - 5a-10z8 + a-10z10 + a-9z - 8a-9z3 + 6a-9z5 - 3a-9z7 + a-9z9 - a-8 + 2a-8z2 - a-8z4 - 2a-8z6 + a-8z8 + a-7z + a-7z3 - 3a-7z5 + a-7z7 - 2a-6 + 7a-6z2 - 5a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {10, 32}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11339. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          1 
j = 25         31 
j = 23        31  
j = 21       53   
j = 19      43    
j = 17     45     
j = 15    34      
j = 13   24       
j = 11  13        
j = 9  2         
j = 711          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 339]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 339]]
Out[3]=   
PD[X[6, 2, 7, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[18, 12, 19, 11], X[2, 14, 3, 13], X[4, 16, 5, 15], 
 
>   X[12, 18, 13, 17], X[10, 20, 11, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 339]]
Out[4]=   
GaussCode[1, -7, 2, -8, 3, -1, 4, -11, 5, -10, 6, -9, 7, -2, 8, -3, 9, -6, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 339]]
Out[5]=   
DTCode[6, 14, 16, 20, 22, 18, 2, 4, 12, 10, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 339]][t]
Out[6]=   
      3    7    11             2      3
-13 + -- - -- + -- + 11 t - 7 t  + 3 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 339]][z]
Out[7]=   
        2       4      6
1 + 10 z  + 11 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 339], Knot[11, NonAlternating, 180]}
In[9]:=
{KnotDet[Knot[11, Alternating, 339]], KnotSignature[Knot[11, Alternating, 339]]}
Out[9]=   
{55, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 339]][q]
Out[10]=   
 3    4      5      6      7      8      9      10      11      12      13    14
q  - q  + 3 q  - 5 q  + 7 q  - 8 q  + 9 q  - 8 q   + 6 q   - 4 q   + 2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 339]}
In[12]:=
A2Invariant[Knot[11, Alternating, 339]][q]
Out[12]=   
 10      14    20    22      24    30    32    34    36    38    42
q   + 2 q   + q   - q   + 2 q   + q   - q   + q   - q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 339]][a, z]
Out[13]=   
                          2      2    2      2    4       4      4      4
-2     2     -8   2    3 z    5 z    z    7 z    z     4 z    3 z    5 z
--- + --- - a   + -- - ---- + ---- + -- + ---- - --- + ---- + ---- + ---- + 
 12    10          6    12     10     8     6     12    10      8      6
a     a           a    a      a      a     a     a     a       a      a
 
     6     6    6
    z     z    z
>   --- + -- + --
     10    8    6
    a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 339]][a, z]
Out[14]=   
                                                    2       2      2      2
-2     2     -8   2     z    3 z   4 z   z    z    z     5 z    7 z    8 z
--- - --- - a   - -- + --- - --- + --- + -- + -- + --- - ---- + ---- + ---- + 
 12    10          6    17    15    11    9    7    16    14     12     10
a     a           a    a     a     a     a    a    a     a      a      a
 
       2      2      3      3    3        3      3    3      4       4      4
    2 z    7 z    3 z    8 z    z     19 z    8 z    z    5 z    13 z    5 z
>   ---- + ---- - ---- + ---- + --- - ----- - ---- + -- - ---- + ----- - ---- - 
      8      6     17     15     13     11      9     7    16      14     12
     a      a     a      a      a      a       a     a    a       a      a
 
        4    4      4    5       5      5       5      5      5      6
    19 z    z    5 z    z     9 z    7 z    26 z    6 z    3 z    2 z
>   ----- - -- - ---- + --- - ---- + ---- + ----- + ---- - ---- + ---- - 
      10     8     6     17    15     13      11      9      7     16
     a      a     a     a     a      a       a       a      a     a
 
        6      6       6      6    6      7      7       7      7    7      8
    10 z    6 z    15 z    2 z    z    3 z    6 z    13 z    3 z    z    3 z
>   ----- + ---- + ----- - ---- + -- + ---- - ---- - ----- - ---- + -- + ---- - 
      14     12      10      8     6    15     13      11      9     7    14
     a      a       a       a     a    a      a       a       a     a    a
 
       8      8    8      9      9    9    10    10
    3 z    5 z    z    2 z    3 z    z    z     z
>   ---- - ---- + -- + ---- + ---- + -- + --- + ---
     12     10     8    13     11     9    12    10
    a      a      a    a      a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 339]], Vassiliev[3][Knot[11, Alternating, 339]]}
Out[15]=   
{10, 32}
In[16]:=
Kh[Knot[11, Alternating, 339]][q, t]
Out[16]=   
 5    7    7        9  2    11  2      11  3      13  3      13  4      15  4
q  + q  + q  t + 2 q  t  + q   t  + 3 q   t  + 2 q   t  + 4 q   t  + 3 q   t  + 
 
       15  5      17  5      17  6      19  6      19  7      21  7
>   4 q   t  + 4 q   t  + 5 q   t  + 4 q   t  + 3 q   t  + 5 q   t  + 
 
       21  8      23  8    23  9      25  9    25  10    27  10    29  11
>   3 q   t  + 3 q   t  + q   t  + 3 q   t  + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a339
K11a338
K11a338
K11a340
K11a340