© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a304
K11a304
K11a306
K11a306
K11a305
Knotscape
This page is passe. Go here instead!

   The Knot K11a305

Visit K11a305's page at Knotilus!

Acknowledgement

K11a305 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X10,5,11,6 X22,8,1,7 X16,9,17,10 X18,12,19,11 X20,13,21,14 X8,15,9,16 X4,18,5,17 X2,19,3,20 X14,21,15,22

Gauss Code: {1, -10, 2, -9, 3, -1, 4, -8, 5, -3, 6, -2, 7, -11, 8, -5, 9, -6, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 12 10 22 16 18 20 8 4 2 14

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 28t-1 - 33 + 28t - 16t2 + 6t3 - t4

Conway Polynomial: 1 + 2z2 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a157, K11a264, ...}

Determinant and Signature: {135, -2}

Jones Polynomial: q-7 - 4q-6 + 8q-5 - 14q-4 + 19q-3 - 21q-2 + 22q-1 - 18 + 14q - 9q2 + 4q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 - 2q-18 + 2q-16 - 3q-14 - 2q-12 + 3q-10 - 3q-8 + 6q-6 - q-4 + 2q-2 + 2 - 3q2 + 3q4 - 2q6 + q10 - q12

HOMFLY-PT Polynomial: - a-2 - 2a-2z2 - a-2z4 + 2 + 7z2 + 7z4 + 2z6 + a2 - 5a2z2 - 9a2z4 - 5a2z6 - a2z8 - a4 + 2a4z2 + 3a4z4 + a4z6

Kauffman Polynomial: - a-3z + 3a-3z3 - 3a-3z5 + a-3z7 + a-2 - 6a-2z2 + 13a-2z4 - 13a-2z6 + 4a-2z8 - 2a-1z + 3a-1z3 + 9a-1z5 - 17a-1z7 + 6a-1z9 + 2 - 19z2 + 50z4 - 42z6 + 5z8 + 3z10 - 2az + 3az3 + 26az5 - 44az7 + 16az9 - a2 - 19a2z2 + 64a2z4 - 64a2z6 + 15a2z8 + 3a2z10 + 9a3z3 - 5a3z5 - 14a3z7 + 10a3z9 - a4 - 6a4z2 + 20a4z4 - 27a4z6 + 14a4z8 + a5z + 4a5z3 - 15a5z5 + 12a5z7 - 6a6z4 + 8a6z6 - 2a7z3 + 4a7z5 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11305. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          3 
j = 5         61 
j = 3        83  
j = 1       106   
j = -1      128    
j = -3     1011     
j = -5    911      
j = -7   510       
j = -9  39        
j = -11 15         
j = -13 3          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 305]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 305]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[10, 5, 11, 6], X[22, 8, 1, 7], 
 
>   X[16, 9, 17, 10], X[18, 12, 19, 11], X[20, 13, 21, 14], X[8, 15, 9, 16], 
 
>   X[4, 18, 5, 17], X[2, 19, 3, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 305]]
Out[4]=   
GaussCode[1, -10, 2, -9, 3, -1, 4, -8, 5, -3, 6, -2, 7, -11, 8, -5, 9, -6, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 305]]
Out[5]=   
DTCode[6, 12, 10, 22, 16, 18, 20, 8, 4, 2, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 305]][t]
Out[6]=   
       -4   6    16   28              2      3    4
-33 - t   + -- - -- + -- + 28 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 305]][z]
Out[7]=   
       2      6    8
1 + 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 157], Knot[11, Alternating, 264], 
 
>   Knot[11, Alternating, 305]}
In[9]:=
{KnotDet[Knot[11, Alternating, 305]], KnotSignature[Knot[11, Alternating, 305]]}
Out[9]=   
{135, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 305]][q]
Out[10]=   
       -7   4    8    14   19   21   22             2      3    4
-18 + q   - -- + -- - -- + -- - -- + -- + 14 q - 9 q  + 4 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 305]}
In[12]:=
A2Invariant[Knot[11, Alternating, 305]][q]
Out[12]=   
     -20    2     2     3     2     3    3    6     -4   2       2      4
2 + q    - --- + --- - --- - --- + --- - -- + -- - q   + -- - 3 q  + 3 q  - 
            18    16    14    12    10    8    6          2
           q     q     q     q     q     q    q          q
 
       6    10    12
>   2 q  + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 305]][a, z]
Out[13]=   
                              2                               4
     -2    2    4      2   2 z       2  2      4  2      4   z       2  4
2 - a   + a  - a  + 7 z  - ---- - 5 a  z  + 2 a  z  + 7 z  - -- - 9 a  z  + 
                             2                                2
                            a                                a
 
       4  4      6      2  6    4  6    2  8
>   3 a  z  + 2 z  - 5 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 305]][a, z]
Out[14]=   
                                                         2
     -2    2    4   z    2 z            5         2   6 z        2  2
2 + a   - a  - a  - -- - --- - 2 a z + a  z - 19 z  - ---- - 19 a  z  - 
                     3    a                             2
                    a                                  a
 
                 3      3
       4  2   3 z    3 z         3      3  3      5  3      7  3       4
>   6 a  z  + ---- + ---- + 3 a z  + 9 a  z  + 4 a  z  - 2 a  z  + 50 z  + 
                3     a
               a
 
        4                                              5      5
    13 z        2  4       4  4      6  4    8  4   3 z    9 z          5
>   ----- + 64 a  z  + 20 a  z  - 6 a  z  + a  z  - ---- + ---- + 26 a z  - 
      2                                               3     a
     a                                               a
 
                                               6
       3  5       5  5      7  5       6   13 z        2  6       4  6
>   5 a  z  - 15 a  z  + 4 a  z  - 42 z  - ----- - 64 a  z  - 27 a  z  + 
                                             2
                                            a
 
               7       7                                             8
       6  6   z    17 z          7       3  7       5  7      8   4 z
>   8 a  z  + -- - ----- - 44 a z  - 14 a  z  + 12 a  z  + 5 z  + ---- + 
               3     a                                              2
              a                                                    a
 
                             9
        2  8       4  8   6 z          9       3  9      10      2  10
>   15 a  z  + 14 a  z  + ---- + 16 a z  + 10 a  z  + 3 z   + 3 a  z
                           a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 305]], Vassiliev[3][Knot[11, Alternating, 305]]}
Out[15]=   
{2, -1}
In[16]:=
Kh[Knot[11, Alternating, 305]][q, t]
Out[16]=   
11   12     1        3        1        5        3       9       5      10
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q     15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q         q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      9      11     10    8 t                 2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 10 q t + 6 q t  + 8 q  t  + 3 q  t  + 6 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a305
K11a304
K11a304
K11a306
K11a306