© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a303
K11a303
K11a305
K11a305
K11a304
Knotscape
This page is passe. Go here instead!

   The Knot K11a304

Visit K11a304's page at Knotilus!

Acknowledgement

K11a304 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X20,6,21,5 X14,8,15,7 X2,10,3,9 X18,11,19,12 X8,14,9,13 X22,16,1,15 X12,17,13,18 X4,20,5,19 X16,22,17,21

Gauss Code: {1, -5, 2, -10, 3, -1, 4, -7, 5, -2, 6, -9, 7, -4, 8, -11, 9, -6, 10, -3, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 10 20 14 2 18 8 22 12 4 16

Alexander Polynomial: - 3t-3 + 14t-2 - 26t-1 + 31 - 26t + 14t2 - 3t3

Conway Polynomial: 1 + 3z2 - 4z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {117, 4}

Jones Polynomial: 1 - 3q + 8q2 - 12q3 + 16q4 - 19q5 + 19q6 - 16q7 + 12q8 - 7q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - q2 + q4 + 3q6 - 2q8 + 4q10 - 2q12 - q14 + q16 - 4q18 + 3q20 - 2q22 + 2q24 + 3q26 - 2q28 + q30 - q32 - q34

HOMFLY-PT Polynomial: - 2a-10 - a-10z2 + 5a-8 + 8a-8z2 + 3a-8z4 - 5a-6 - 9a-6z2 - 7a-6z4 - 2a-6z6 + 2a-4 + 3a-4z2 - a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4

Kauffman Polynomial: a-13z - 2a-13z3 + a-13z5 + a-12z2 - 5a-12z4 + 3a-12z6 - a-11z + a-11z3 - 7a-11z5 + 5a-11z7 + 2a-10 - 11a-10z2 + 17a-10z4 - 15a-10z6 + 7a-10z8 - 2a-9z + 3a-9z3 + 8a-9z5 - 11a-9z7 + 6a-9z9 + 5a-8 - 29a-8z2 + 57a-8z4 - 39a-8z6 + 9a-8z8 + 2a-8z10 - 4a-7z3 + 25a-7z5 - 28a-7z7 + 11a-7z9 + 5a-6 - 26a-6z2 + 44a-6z4 - 33a-6z6 + 7a-6z8 + 2a-6z10 - a-5z3 + 2a-5z5 - 9a-5z7 + 5a-5z9 + 2a-4 - 6a-4z2 + 6a-4z4 - 11a-4z6 + 5a-4z8 + 3a-3z3 - 7a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 8}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11304. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          2 
j = 19         51 
j = 17        72  
j = 15       95   
j = 13      107    
j = 11     99     
j = 9    710      
j = 7   59       
j = 5  37        
j = 3 16         
j = 1 2          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 304]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 304]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[20, 6, 21, 5], X[14, 8, 15, 7], 
 
>   X[2, 10, 3, 9], X[18, 11, 19, 12], X[8, 14, 9, 13], X[22, 16, 1, 15], 
 
>   X[12, 17, 13, 18], X[4, 20, 5, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 304]]
Out[4]=   
GaussCode[1, -5, 2, -10, 3, -1, 4, -7, 5, -2, 6, -9, 7, -4, 8, -11, 9, -6, 10, 
 
>   -3, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 304]]
Out[5]=   
DTCode[6, 10, 20, 14, 2, 18, 8, 22, 12, 4, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 304]][t]
Out[6]=   
     3    14   26              2      3
31 - -- + -- - -- - 26 t + 14 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 304]][z]
Out[7]=   
       2      4      6
1 + 3 z  - 4 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 304]}
In[9]:=
{KnotDet[Knot[11, Alternating, 304]], KnotSignature[Knot[11, Alternating, 304]]}
Out[9]=   
{117, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 304]][q]
Out[10]=   
             2       3       4       5       6       7       8      9      10
1 - 3 q + 8 q  - 12 q  + 16 q  - 19 q  + 19 q  - 16 q  + 12 q  - 7 q  + 3 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 304]}
In[12]:=
A2Invariant[Knot[11, Alternating, 304]][q]
Out[12]=   
     2    4      6      8      10      12    14    16      18      20      22
1 - q  + q  + 3 q  - 2 q  + 4 q   - 2 q   - q   + q   - 4 q   + 3 q   - 2 q   + 
 
       24      26      28    30    32    34
>   2 q   + 3 q   - 2 q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 304]][a, z]
Out[13]=   
                            2       2      2      2      2      4      4    4
-2    5    5    2     -2   z     8 z    9 z    3 z    2 z    3 z    7 z    z
--- + -- - -- + -- + a   - --- + ---- - ---- + ---- + ---- + ---- - ---- - -- + 
 10    8    6    4          10     8      6      4      2      8      6     4
a     a    a    a          a      a      a      a      a      a      a     a
 
     4      6    6
    z    2 z    z
>   -- - ---- - --
     2     6     4
    a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 304]][a, z]
Out[14]=   
                                              2        2       2       2
 2    5    5    2     -2    z     z    2 z   z     11 z    29 z    26 z
--- + -- + -- + -- - a   + --- - --- - --- + --- - ----- - ----- - ----- - 
 10    8    6    4          13    11    9     12     10      8       6
a     a    a    a          a     a     a     a      a       a       a
 
       2      2      3    3       3      3    3      3      4       4       4
    6 z    3 z    2 z    z     3 z    4 z    z    3 z    5 z    17 z    57 z
>   ---- + ---- - ---- + --- + ---- - ---- - -- + ---- - ---- + ----- + ----- + 
      4      2     13     11     9      7     5     3     12      10      8
     a      a     a      a      a      a     a     a     a       a       a
 
        4      4      4    5       5      5       5      5      5      6
    44 z    6 z    3 z    z     7 z    8 z    25 z    2 z    7 z    3 z
>   ----- + ---- - ---- + --- - ---- + ---- + ----- + ---- - ---- + ---- - 
      6       4      2     13    11      9      7       5      3     12
     a       a      a     a     a       a      a       a      a     a
 
        6       6       6       6    6      7       7       7      7      7
    15 z    39 z    33 z    11 z    z    5 z    11 z    28 z    9 z    3 z
>   ----- - ----- - ----- - ----- + -- + ---- - ----- - ----- - ---- + ---- + 
      10      8       6       4      2    11      9       7       5      3
     a       a       a       a      a    a       a       a       a      a
 
       8      8      8      8      9       9      9      10      10
    7 z    9 z    7 z    5 z    6 z    11 z    5 z    2 z     2 z
>   ---- + ---- + ---- + ---- + ---- + ----- + ---- + ----- + -----
     10      8      6      4      9      7       5      8       6
    a       a      a      a      a      a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 304]], Vassiliev[3][Knot[11, Alternating, 304]]}
Out[15]=   
{3, 8}
In[16]:=
Kh[Knot[11, Alternating, 304]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7        7  2      9  2
6 q  + 3 q  + ---- + --- + -- + 7 q  t + 5 q  t + 9 q  t  + 7 q  t  + 
                 2    t    t
              q t
 
        9  3      11  3      11  4       13  4      13  5      15  5
>   10 q  t  + 9 q   t  + 9 q   t  + 10 q   t  + 7 q   t  + 9 q   t  + 
 
       15  6      17  6      17  7      19  7    19  8      21  8    23  9
>   5 q   t  + 7 q   t  + 2 q   t  + 5 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a304
K11a303
K11a303
K11a305
K11a305