© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a294
K11a294
K11a296
K11a296
K11a295
Knotscape
This page is passe. Go here instead!

   The Knot K11a295

Visit K11a295's page at Knotilus!

Acknowledgement

K11a295 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,5,17,6 X22,8,1,7 X18,9,19,10 X2,11,3,12 X20,13,21,14 X8,15,9,16 X4,17,5,18 X12,19,13,20 X14,21,15,22

Gauss Code: {1, -6, 2, -9, 3, -1, 4, -8, 5, -2, 6, -10, 7, -11, 8, -3, 9, -5, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 10 16 22 18 2 20 8 4 12 14

Alexander Polynomial: - 3t-3 + 14t-2 - 24t-1 + 27 - 24t + 14t2 - 3t3

Conway Polynomial: 1 + 5z2 - 4z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {109, -4}

Jones Polynomial: - q-11 + 3q-10 - 7q-9 + 11q-8 - 15q-7 + 18q-6 - 17q-5 + 15q-4 - 11q-3 + 7q-2 - 3q-1 + 1

Other knots (up to mirrors) with the same Jones Polynomial: {K11a120, ...}

A2 (sl(3)) Invariant: - q-34 - q-32 + q-30 - 2q-28 + 2q-26 + q-24 - 2q-22 + 3q-20 - 3q-18 + 2q-16 - q-12 + 4q-10 - 2q-8 + 2q-6 - q-2 + 1

HOMFLY-PT Polynomial: 2a2z2 + a2z4 + 3a4 + 4a4z2 - a4z4 - a4z6 - 4a6 - 8a6z2 - 7a6z4 - 2a6z6 + 4a8 + 8a8z2 + 3a8z4 - 2a10 - a10z2

Kauffman Polynomial: 2a2z2 - 3a2z4 + a2z6 + 4a3z3 - 8a3z5 + 3a3z7 + 3a4 - 10a4z2 + 13a4z4 - 14a4z6 + 5a4z8 + a5z - 9a5z3 + 13a5z5 - 13a5z7 + 5a5z9 + 4a6 - 22a6z2 + 37a6z4 - 25a6z6 + 4a6z8 + 2a6z10 + 3a7z - 16a7z3 + 35a7z5 - 29a7z7 + 10a7z9 + 4a8 - 18a8z2 + 36a8z4 - 24a8z6 + 5a8z8 + 2a8z10 - a9z + 2a9z3 + 5a9z5 - 8a9z7 + 5a9z9 + 2a10 - 7a10z2 + 10a10z4 - 11a10z6 + 6a10z8 - 2a11z + 3a11z3 - 8a11z5 + 5a11z7 + a12z2 - 5a12z4 + 3a12z6 + a13z - 2a13z3 + a13z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, -13}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 11295. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1           1
j = -1          2 
j = -3         51 
j = -5        73  
j = -7       84   
j = -9      97    
j = -11     98     
j = -13    69      
j = -15   59       
j = -17  26        
j = -19 15         
j = -21 2          
j = -231           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 295]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 295]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 5, 17, 6], X[22, 8, 1, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[20, 13, 21, 14], X[8, 15, 9, 16], 
 
>   X[4, 17, 5, 18], X[12, 19, 13, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 295]]
Out[4]=   
GaussCode[1, -6, 2, -9, 3, -1, 4, -8, 5, -2, 6, -10, 7, -11, 8, -3, 9, -5, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 295]]
Out[5]=   
DTCode[6, 10, 16, 22, 18, 2, 20, 8, 4, 12, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 295]][t]
Out[6]=   
     3    14   24              2      3
27 - -- + -- - -- - 24 t + 14 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 295]][z]
Out[7]=   
       2      4      6
1 + 5 z  - 4 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 295]}
In[9]:=
{KnotDet[Knot[11, Alternating, 295]], KnotSignature[Knot[11, Alternating, 295]]}
Out[9]=   
{109, -4}
In[10]:=
J=Jones[Knot[11, Alternating, 295]][q]
Out[10]=   
     -11    3    7    11   15   18   17   15   11   7    3
1 - q    + --- - -- + -- - -- + -- - -- + -- - -- + -- - -
            10    9    8    7    6    5    4    3    2   q
           q     q    q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 120], Knot[11, Alternating, 295]}
In[12]:=
A2Invariant[Knot[11, Alternating, 295]][q]
Out[12]=   
     -34    -32    -30    2     2     -24    2     3     3     2     -12
1 - q    - q    + q    - --- + --- + q    - --- + --- - --- + --- - q    + 
                          28    26           22    20    18    16
                         q     q            q     q     q     q
 
     4    2    2     -2
>   --- - -- + -- - q
     10    8    6
    q     q    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 295]][a, z]
Out[13]=   
   4      6      8      10      2  2      4  2      6  2      8  2    10  2
3 a  - 4 a  + 4 a  - 2 a   + 2 a  z  + 4 a  z  - 8 a  z  + 8 a  z  - a   z  + 
 
     2  4    4  4      6  4      8  4    4  6      6  6
>   a  z  - a  z  - 7 a  z  + 3 a  z  - a  z  - 2 a  z
In[14]:=
Kauffman[Knot[11, Alternating, 295]][a, z]
Out[14]=   
   4      6      8      10    5        7      9        11      13        2  2
3 a  + 4 a  + 4 a  + 2 a   + a  z + 3 a  z - a  z - 2 a   z + a   z + 2 a  z  - 
 
        4  2       6  2       8  2      10  2    12  2      3  3      5  3
>   10 a  z  - 22 a  z  - 18 a  z  - 7 a   z  + a   z  + 4 a  z  - 9 a  z  - 
 
        7  3      9  3      11  3      13  3      2  4       4  4       6  4
>   16 a  z  + 2 a  z  + 3 a   z  - 2 a   z  - 3 a  z  + 13 a  z  + 37 a  z  + 
 
        8  4       10  4      12  4      3  5       5  5       7  5      9  5
>   36 a  z  + 10 a   z  - 5 a   z  - 8 a  z  + 13 a  z  + 35 a  z  + 5 a  z  - 
 
       11  5    13  5    2  6       4  6       6  6       8  6       10  6
>   8 a   z  + a   z  + a  z  - 14 a  z  - 25 a  z  - 24 a  z  - 11 a   z  + 
 
       12  6      3  7       5  7       7  7      9  7      11  7      4  8
>   3 a   z  + 3 a  z  - 13 a  z  - 29 a  z  - 8 a  z  + 5 a   z  + 5 a  z  + 
 
       6  8      8  8      10  8      5  9       7  9      9  9      6  10
>   4 a  z  + 5 a  z  + 6 a   z  + 5 a  z  + 10 a  z  + 5 a  z  + 2 a  z   + 
 
       8  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 295]], Vassiliev[3][Knot[11, Alternating, 295]]}
Out[15]=   
{5, -13}
In[16]:=
Kh[Knot[11, Alternating, 295]][q, t]
Out[16]=   
3    5      1        2        1        5        2        6        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    23  9    21  8    19  8    19  7    17  7    17  6    15  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        6        9        9        8        9       7       8      4
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     15  5    13  5    13  4    11  4    11  3    9  3    9  2    7  2    7
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     7     t    2 t      2
>   ---- + -- + --- + q t
     5      3    q
    q  t   q


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a295
K11a294
K11a294
K11a296
K11a296