© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a293
K11a293
K11a295
K11a295
K11a294
Knotscape
This page is passe. Go here instead!

   The Knot K11a294

Visit K11a294's page at Knotilus!

Acknowledgement

K11a294 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X16,5,17,6 X22,8,1,7 X4,10,5,9 X18,11,19,12 X20,13,21,14 X8,15,9,16 X2,17,3,18 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -9, 2, -5, 3, -1, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -6, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 10 16 22 4 18 20 8 2 14 12

Alexander Polynomial: 2t-3 - 11t-2 + 29t-1 - 39 + 29t - 11t2 + 2t3

Conway Polynomial: 1 + 3z2 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a178, ...}

Determinant and Signature: {123, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 17q-4 + 20q-3 - 19q-2 + 18q-1 - 13 + 8q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a146, ...}

A2 (sl(3)) Invariant: - q-24 + q-22 - 2q-20 - 2q-18 + 4q-16 - 3q-14 + 2q-12 + 2q-10 - q-8 + 4q-6 - 3q-4 + 3q-2 - 2q2 + 3q4 - 2q6 - q8 + q10

HOMFLY-PT Polynomial: a-2z2 - 2z2 - 2z4 + a2z4 + a2z6 + 3a4 + 6a4z2 + 3a4z4 + a4z6 - 2a6 - 2a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 2a-2z4 + a-2z6 + a-1z + 6a-1z3 - 10a-1z5 + 4a-1z7 - z2 + 6z4 - 13z6 + 6z8 + 3az - 4az3 - 2az5 - 6az7 + 5az9 - 10a2z2 + 19a2z4 - 23a2z6 + 7a2z8 + 2a2z10 + 2a3z - 12a3z3 + 24a3z5 - 25a3z7 + 11a3z9 + 3a4 - 18a4z2 + 40a4z4 - 32a4z6 + 9a4z8 + 2a4z10 - 4a5z + 11a5z3 + 2a5z5 - 9a5z7 + 6a5z9 + 2a6 - 10a6z2 + 24a6z4 - 20a6z6 + 8a6z8 - 4a7z + 11a7z3 - 13a7z5 + 6a7z7 - 5a8z4 + 3a8z6 - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11294. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         51 
j = 1        83  
j = -1       105   
j = -3      109    
j = -5     109     
j = -7    710      
j = -9   510       
j = -11  27        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 294]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 294]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 5, 17, 6], X[22, 8, 1, 7], 
 
>   X[4, 10, 5, 9], X[18, 11, 19, 12], X[20, 13, 21, 14], X[8, 15, 9, 16], 
 
>   X[2, 17, 3, 18], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 294]]
Out[4]=   
GaussCode[1, -9, 2, -5, 3, -1, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -6, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 294]]
Out[5]=   
DTCode[6, 10, 16, 22, 4, 18, 20, 8, 2, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 294]][t]
Out[6]=   
      2    11   29              2      3
-39 + -- - -- + -- + 29 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 294]][z]
Out[7]=   
       2    4      6
1 + 3 z  + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 178], Knot[11, Alternating, 294]}
In[9]:=
{KnotDet[Knot[11, Alternating, 294]], KnotSignature[Knot[11, Alternating, 294]]}
Out[9]=   
{123, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 294]][q]
Out[10]=   
       -8   3    7    12   17   20   19   18            2    3
-13 - q   + -- - -- + -- - -- + -- - -- + -- + 8 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 146], Knot[11, Alternating, 294]}
In[12]:=
A2Invariant[Knot[11, Alternating, 294]][q]
Out[12]=   
  -24    -22    2     2     4     3     2     2     -8   4    3    3       2
-q    + q    - --- - --- + --- - --- + --- + --- - q   + -- - -- + -- - 2 q  + 
                20    18    16    14    12    10          6    4    2
               q     q     q     q     q     q           q    q    q
 
       4      6    8    10
>   3 q  - 2 q  - q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 294]][a, z]
Out[13]=   
                      2
   4      6      2   z       4  2      6  2      4    2  4      4  4    6  4
3 a  - 2 a  - 2 z  + -- + 6 a  z  - 2 a  z  - 2 z  + a  z  + 3 a  z  - a  z  + 
                      2
                     a
 
     2  6    4  6
>   a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 294]][a, z]
Out[14]=   
                                                           2
   4      6   z              3        5        7      2   z        2  2
3 a  + 2 a  + - + 3 a z + 2 a  z - 4 a  z - 4 a  z - z  + -- - 10 a  z  - 
              a                                            2
                                                          a
 
                             3
        4  2       6  2   6 z         3       3  3       5  3       7  3
>   18 a  z  - 10 a  z  + ---- - 4 a z  - 12 a  z  + 11 a  z  + 11 a  z  - 
                           a
 
                        4                                                  5
       9  3      4   2 z        2  4       4  4       6  4      8  4   10 z
>   2 a  z  + 6 z  - ---- + 19 a  z  + 40 a  z  + 24 a  z  - 5 a  z  - ----- - 
                       2                                                 a
                      a
 
                                                              6
         5       3  5      5  5       7  5    9  5       6   z        2  6
>   2 a z  + 24 a  z  + 2 a  z  - 13 a  z  + a  z  - 13 z  + -- - 23 a  z  - 
                                                              2
                                                             a
 
                                       7
        4  6       6  6      8  6   4 z         7       3  7      5  7
>   32 a  z  - 20 a  z  + 3 a  z  + ---- - 6 a z  - 25 a  z  - 9 a  z  + 
                                     a
 
       7  7      8      2  8      4  8      6  8        9       3  9
>   6 a  z  + 6 z  + 7 a  z  + 9 a  z  + 8 a  z  + 5 a z  + 11 a  z  + 
 
       5  9      2  10      4  10
>   6 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 294]], Vassiliev[3][Knot[11, Alternating, 294]]}
Out[15]=   
{3, -5}
In[16]:=
Kh[Knot[11, Alternating, 294]][q, t]
Out[16]=   
9    10     1        2        1        5        2        7        5      10
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10      10      9      10    5 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 8 q t + 3 q t  + 5 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a294
K11a293
K11a293
K11a295
K11a295