© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a281
K11a281
K11a283
K11a283
K11a282
Knotscape
This page is passe. Go here instead!

   The Knot K11a282

Visit K11a282's page at Knotilus!

Acknowledgement

K11a282 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X16,5,17,6 X14,8,15,7 X4,10,5,9 X18,11,19,12 X20,13,21,14 X22,16,1,15 X2,17,3,18 X12,19,13,20 X8,21,9,22

Gauss Code: {1, -9, 2, -5, 3, -1, 4, -11, 5, -2, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 10 16 14 4 18 20 22 2 12 8

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 26t-1 - 29 + 26t - 16t2 + 6t3 - t4

Conway Polynomial: 1 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a81, ...}

Determinant and Signature: {127, -2}

Jones Polynomial: q-7 - 4q-6 + 8q-5 - 13q-4 + 18q-3 - 20q-2 + 20q-1 - 17 + 13q - 8q2 + 4q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11a81, ...}

A2 (sl(3)) Invariant: q-20 - 2q-18 + 2q-16 - 2q-14 - q-12 + 3q-10 - 3q-8 + 5q-6 - 2q-4 + q-2 + 1 - 3q2 + 3q4 - q6 + q8 + q10 - q12

HOMFLY-PT Polynomial: - 2a-2z2 - a-2z4 + 1 + 6z2 + 7z4 + 2z6 - 6a2z2 - 9a2z4 - 5a2z6 - a2z8 + 2a4z2 + 3a4z4 + a4z6

Kauffman Polynomial: 2a-3z3 - 3a-3z5 + a-3z7 - 5a-2z2 + 14a-2z4 - 14a-2z6 + 4a-2z8 - 5a-1z3 + 18a-1z5 - 20a-1z7 + 6a-1z9 + 1 - 14z2 + 41z4 - 33z6 + 2z8 + 3z10 - 9az3 + 39az5 - 46az7 + 15az9 - 12a2z2 + 45a2z4 - 47a2z6 + 10a2z8 + 3a2z10 + 3a3z3 + a3z5 - 14a3z7 + 9a3z9 - 2a4z2 + 10a4z4 - 20a4z6 + 12a4z8 + 3a5z3 - 13a5z5 + 11a5z7 + a6z2 - 7a6z4 + 8a6z6 - 2a7z3 + 4a7z5 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11282. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          3 
j = 5         51 
j = 3        83  
j = 1       95   
j = -1      118    
j = -3     1010     
j = -5    810      
j = -7   510       
j = -9  38        
j = -11 15         
j = -13 3          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 282]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 282]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 5, 17, 6], X[14, 8, 15, 7], 
 
>   X[4, 10, 5, 9], X[18, 11, 19, 12], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[2, 17, 3, 18], X[12, 19, 13, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 282]]
Out[4]=   
GaussCode[1, -9, 2, -5, 3, -1, 4, -11, 5, -2, 6, -10, 7, -4, 8, -3, 9, -6, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 282]]
Out[5]=   
DTCode[6, 10, 16, 14, 4, 18, 20, 22, 2, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 282]][t]
Out[6]=   
       -4   6    16   26              2      3    4
-29 - t   + -- - -- + -- + 26 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 282]][z]
Out[7]=   
       6    8
1 - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}
In[9]:=
{KnotDet[Knot[11, Alternating, 282]], KnotSignature[Knot[11, Alternating, 282]]}
Out[9]=   
{127, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 282]][q]
Out[10]=   
       -7   4    8    13   18   20   20             2      3    4
-17 + q   - -- + -- - -- + -- - -- + -- + 13 q - 8 q  + 4 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}
In[12]:=
A2Invariant[Knot[11, Alternating, 282]][q]
Out[12]=   
     -20    2     2     2     -12    3    3    5    2     -2      2      4
1 + q    - --- + --- - --- - q    + --- - -- + -- - -- + q   - 3 q  + 3 q  - 
            18    16    14           10    8    6    4
           q     q     q            q     q    q    q
 
     6    8    10    12
>   q  + q  + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 282]][a, z]
Out[13]=   
              2                               4
       2   2 z       2  2      4  2      4   z       2  4      4  4      6
1 + 6 z  - ---- - 6 a  z  + 2 a  z  + 7 z  - -- - 9 a  z  + 3 a  z  + 2 z  - 
             2                                2
            a                                a
 
       2  6    4  6    2  8
>   5 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 282]][a, z]
Out[14]=   
               2                                   3      3
        2   5 z        2  2      4  2    6  2   2 z    5 z         3
1 - 14 z  - ---- - 12 a  z  - 2 a  z  + a  z  + ---- - ---- - 9 a z  + 
              2                                   3     a
             a                                   a
 
                                              4
       3  3      5  3      7  3       4   14 z        2  4       4  4
>   3 a  z  + 3 a  z  - 2 a  z  + 41 z  + ----- + 45 a  z  + 10 a  z  - 
                                            2
                                           a
 
                         5       5
       6  4    8  4   3 z    18 z          5    3  5       5  5      7  5
>   7 a  z  + a  z  - ---- + ----- + 39 a z  + a  z  - 13 a  z  + 4 a  z  - 
                        3      a
                       a
 
                6                                    7       7
        6   14 z        2  6       4  6      6  6   z    20 z          7
>   33 z  - ----- - 47 a  z  - 20 a  z  + 8 a  z  + -- - ----- - 46 a z  - 
              2                                      3     a
             a                                      a
 
                                    8                            9
        3  7       5  7      8   4 z        2  8       4  8   6 z          9
>   14 a  z  + 11 a  z  + 2 z  + ---- + 10 a  z  + 12 a  z  + ---- + 15 a z  + 
                                   2                           a
                                  a
 
       3  9      10      2  10
>   9 a  z  + 3 z   + 3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 282]], Vassiliev[3][Knot[11, Alternating, 282]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, Alternating, 282]][q, t]
Out[16]=   
10   11     1        3        1        5        3       8       5      10
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q     15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q         q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      8      10     10    8 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 9 q t + 5 q t  + 8 q  t  + 3 q  t  + 5 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a282
K11a281
K11a281
K11a283
K11a283