© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a280
K11a280
K11a282
K11a282
K11a281
Knotscape
This page is passe. Go here instead!

   The Knot K11a281

Visit K11a281's page at Knotilus!

Acknowledgement

K11a281 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,6,17,5 X12,8,13,7 X20,10,21,9 X2,11,3,12 X18,13,19,14 X4,16,5,15 X22,17,1,18 X8,20,9,19 X14,21,15,22

Gauss Code: {1, -6, 2, -8, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -7, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 10 16 12 20 2 18 4 22 8 14

Alexander Polynomial: - t-4 + 6t-3 - 18t-2 + 33t-1 - 39 + 33t - 18t2 + 6t3 - t4

Conway Polynomial: 1 - z2 - 2z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a19, K11a25, ...}

Determinant and Signature: {155, 2}

Jones Polynomial: - q-4 + 4q-3 - 9q-2 + 16q-1 - 21 + 25q - 25q2 + 22q3 - 17q4 + 10q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-10 - 2q-6 + 5q-4 - 2q-2 + 3 + 2q2 - 4q4 + 4q6 - 6q8 + 3q10 - q12 - 2q14 + 4q16 - 2q18 + q20

HOMFLY-PT Polynomial: 2a-4 + 4a-4z2 + 3a-4z4 + a-4z6 - 5a-2 - 12a-2z2 - 11a-2z4 - 5a-2z6 - a-2z8 + 5 + 9z2 + 7z4 + 2z6 - a2 - 2a2z2 - a2z4

Kauffman Polynomial: a-8z4 + 4a-7z5 + 3a-6z2 - 7a-6z4 + 10a-6z6 - 3a-5z + 14a-5z3 - 24a-5z5 + 17a-5z7 + 2a-4 - 7a-4z2 + 19a-4z4 - 33a-4z6 + 19a-4z8 - 6a-3z + 22a-3z3 - 25a-3z5 - 8a-3z7 + 12a-3z9 + 5a-2 - 28a-2z2 + 71a-2z4 - 81a-2z6 + 24a-2z8 + 3a-2z10 - 5a-1z + 12a-1z3 + 12a-1z5 - 41a-1z7 + 18a-1z9 + 5 - 25z2 + 59z4 - 51z6 + 9z8 + 3z10 - 3az + 7az3 + 6az5 - 15az7 + 6az9 + a2 - 7a2z2 + 15a2z4 - 13a2z6 + 4a2z8 - a3z + 3a3z3 - 3a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11281. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         71 
j = 9        103  
j = 7       127   
j = 5      1310    
j = 3     1212     
j = 1    1014      
j = -1   611       
j = -3  310        
j = -5 16         
j = -7 3          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 281]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 281]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 6, 17, 5], X[12, 8, 13, 7], 
 
>   X[20, 10, 21, 9], X[2, 11, 3, 12], X[18, 13, 19, 14], X[4, 16, 5, 15], 
 
>   X[22, 17, 1, 18], X[8, 20, 9, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 281]]
Out[4]=   
GaussCode[1, -6, 2, -8, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -7, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 281]]
Out[5]=   
DTCode[6, 10, 16, 12, 20, 2, 18, 4, 22, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 281]][t]
Out[6]=   
       -4   6    18   33              2      3    4
-39 - t   + -- - -- + -- + 33 t - 18 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 281]][z]
Out[7]=   
     2      4      6    8
1 - z  - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 19], Knot[11, Alternating, 25], 
 
>   Knot[11, Alternating, 281]}
In[9]:=
{KnotDet[Knot[11, Alternating, 281]], KnotSignature[Knot[11, Alternating, 281]]}
Out[9]=   
{155, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 281]][q]
Out[10]=   
       -4   4    9    16              2       3       4       5      6    7
-21 - q   + -- - -- + -- + 25 q - 25 q  + 22 q  - 17 q  + 10 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 281]}
In[12]:=
A2Invariant[Knot[11, Alternating, 281]][q]
Out[12]=   
     -12    -10   2    5    2       2      4      6      8      10    12
3 - q    + q    - -- + -- - -- + 2 q  - 4 q  + 4 q  - 6 q  + 3 q   - q   - 
                   6    4    2
                  q    q    q
 
       14      16      18    20
>   2 q   + 4 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 281]][a, z]
Out[13]=   
                             2       2                       4       4
    2    5     2      2   4 z    12 z       2  2      4   3 z    11 z
5 + -- - -- - a  + 9 z  + ---- - ----- - 2 a  z  + 7 z  + ---- - ----- - 
     4    2                 4      2                        4      2
    a    a                 a      a                        a      a
 
                    6      6    8
     2  4      6   z    5 z    z
>   a  z  + 2 z  + -- - ---- - --
                    4     2     2
                   a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 281]][a, z]
Out[14]=   
                                                               2      2
    2    5     2   3 z   6 z   5 z            3         2   3 z    7 z
5 + -- + -- + a  - --- - --- - --- - 3 a z - a  z - 25 z  + ---- - ---- - 
     4    2         5     3     a                             6      4
    a    a         a     a                                   a      a
 
        2                 3       3       3                               4
    28 z       2  2   14 z    22 z    12 z         3      3  3       4   z
>   ----- - 7 a  z  + ----- + ----- + ----- + 7 a z  + 3 a  z  + 59 z  + -- - 
      2                 5       3       a                                 8
     a                 a       a                                         a
 
       4       4       4                 5       5       5       5
    7 z    19 z    71 z        2  4   4 z    24 z    25 z    12 z         5
>   ---- + ----- + ----- + 15 a  z  + ---- - ----- - ----- + ----- + 6 a z  - 
      6      4       2                  7      5       3       a
     a      a       a                  a      a       a
 
                          6       6       6                  7      7       7
       3  5       6   10 z    33 z    81 z        2  6   17 z    8 z    41 z
>   3 a  z  - 51 z  + ----- - ----- - ----- - 13 a  z  + ----- - ---- - ----- - 
                        6       4       2                  5       3      a
                       a       a       a                  a       a
 
                                 8       8                 9       9
          7    3  7      8   19 z    24 z       2  8   12 z    18 z         9
>   15 a z  + a  z  + 9 z  + ----- + ----- + 4 a  z  + ----- + ----- + 6 a z  + 
                               4       2                 3       a
                              a       a                 a
 
               10
       10   3 z
>   3 z   + -----
              2
             a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 281]], Vassiliev[3][Knot[11, Alternating, 281]]}
Out[15]=   
{-1, -2}
In[16]:=
Kh[Knot[11, Alternating, 281]][q, t]
Out[16]=   
           3     1       3       1       6       3      10      6     11
14 q + 12 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    10 q       3         5         5  2       7  2      7  3       9  3
>   ---- + 12 q  t + 13 q  t + 10 q  t  + 12 q  t  + 7 q  t  + 10 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 7 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a281
K11a280
K11a280
K11a282
K11a282