© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a251
K11a251
K11a253
K11a253
K11a252
Knotscape
This page is passe. Go here instead!

   The Knot K11a252

Visit K11a252's page at Knotilus!

Acknowledgement

K11a252 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X12,5,13,6 X2837 X18,9,19,10 X16,12,17,11 X4,13,5,14 X20,16,21,15 X22,17,1,18 X14,20,15,19 X10,21,11,22

Gauss Code: {1, -4, 2, -7, 3, -1, 4, -2, 5, -11, 6, -3, 7, -10, 8, -6, 9, -5, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 12 2 18 16 4 20 22 14 10

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 27t-1 - 31 + 27t - 16t2 + 6t3 - t4

Conway Polynomial: 1 + z2 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a131, K11a254, ...}

Determinant and Signature: {131, 2}

Jones Polynomial: - q-4 + 3q-3 - 7q-2 + 13q-1 - 17 + 21q - 21q2 + 19q3 - 15q4 + 9q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11a254, ...}

A2 (sl(3)) Invariant: - q-12 - 2q-6 + 4q-4 - q-2 + 3 + 3q2 - 3q4 + 4q6 - 5q8 + 2q10 - q12 - 2q14 + 3q16 - 2q18 + q20

HOMFLY-PT Polynomial: a-4 + 3a-4z2 + 3a-4z4 + a-4z6 - 4a-2 - 10a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 6 + 11z2 + 8z4 + 2z6 - 2a2 - 3a2z2 - a2z4

Kauffman Polynomial: a-8z4 - a-7z3 + 4a-7z5 + 2a-6z2 - 7a-6z4 + 9a-6z6 - 2a-5z + 11a-5z3 - 20a-5z5 + 14a-5z7 + a-4 - 3a-4z2 + 10a-4z4 - 22a-4z6 + 14a-4z8 - 6a-3z + 23a-3z3 - 27a-3z5 - a-3z7 + 8a-3z9 + 4a-2 - 19a-2z2 + 47a-2z4 - 55a-2z6 + 17a-2z8 + 2a-2z10 - 7a-1z + 15a-1z3 + 3a-1z5 - 26a-1z7 + 12a-1z9 + 6 - 22z2 + 43z4 - 35z6 + 6z8 + 2z10 - 5az + 9az3 + 2az5 - 10az7 + 4az9 + 2a2 - 8a2z2 + 14a2z4 - 11a2z6 + 3a2z8 - 2a3z + 5a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11252. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         61 
j = 9        93  
j = 7       106   
j = 5      119    
j = 3     1010     
j = 1    812      
j = -1   59       
j = -3  28        
j = -5 15         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 252]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 252]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[18, 9, 19, 10], X[16, 12, 17, 11], X[4, 13, 5, 14], X[20, 16, 21, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 252]]
Out[4]=   
GaussCode[1, -4, 2, -7, 3, -1, 4, -2, 5, -11, 6, -3, 7, -10, 8, -6, 9, -5, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 252]]
Out[5]=   
DTCode[6, 8, 12, 2, 18, 16, 4, 20, 22, 14, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 252]][t]
Out[6]=   
       -4   6    16   27              2      3    4
-31 - t   + -- - -- + -- + 27 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 252]][z]
Out[7]=   
     2      6    8
1 + z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 131], Knot[11, Alternating, 252], 
 
>   Knot[11, Alternating, 254]}
In[9]:=
{KnotDet[Knot[11, Alternating, 252]], KnotSignature[Knot[11, Alternating, 252]]}
Out[9]=   
{131, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 252]][q]
Out[10]=   
       -4   3    7    13              2       3       4      5      6    7
-17 - q   + -- - -- + -- + 21 q - 21 q  + 19 q  - 15 q  + 9 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 252], Knot[11, Alternating, 254]}
In[12]:=
A2Invariant[Knot[11, Alternating, 252]][q]
Out[12]=   
     -12   2    4     -2      2      4      6      8      10    12      14
3 - q    - -- + -- - q   + 3 q  - 3 q  + 4 q  - 5 q  + 2 q   - q   - 2 q   + 
            6    4
           q    q
 
       16      18    20
>   3 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 252]][a, z]
Out[13]=   
                                 2       2                       4       4
     -4   4       2       2   3 z    10 z       2  2      4   3 z    10 z
6 + a   - -- - 2 a  + 11 z  + ---- - ----- - 3 a  z  + 8 z  + ---- - ----- - 
           2                    4      2                        4      2
          a                    a      a                        a      a
 
                    6      6    8
     2  4      6   z    5 z    z
>   a  z  + 2 z  + -- - ---- - --
                    4     2     2
                   a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 252]][a, z]
Out[14]=   
                                                                    2      2
     -4   4       2   2 z   6 z   7 z              3         2   2 z    3 z
6 + a   + -- + 2 a  - --- - --- - --- - 5 a z - 2 a  z - 22 z  + ---- - ---- - 
           2           5     3     a                               6      4
          a           a     a                                     a      a
 
        2              3       3       3       3
    19 z       2  2   z    11 z    23 z    15 z         3      3  3       4
>   ----- - 8 a  z  - -- + ----- + ----- + ----- + 9 a z  + 5 a  z  + 43 z  + 
      2                7     5       3       a
     a                a     a       a
 
     4      4       4       4                 5       5       5      5
    z    7 z    10 z    47 z        2  4   4 z    20 z    27 z    3 z
>   -- - ---- + ----- + ----- + 14 a  z  + ---- - ----- - ----- + ---- + 
     8     6      4       2                  7      5       3      a
    a     a      a       a                  a      a       a
 
                                  6       6       6                  7    7
         5      3  5       6   9 z    22 z    55 z        2  6   14 z    z
>   2 a z  - 4 a  z  - 35 z  + ---- - ----- - ----- - 11 a  z  + ----- - -- - 
                                 6      4       2                  5      3
                                a      a       a                  a      a
 
        7                                8       8                9       9
    26 z          7    3  7      8   14 z    17 z       2  8   8 z    12 z
>   ----- - 10 a z  + a  z  + 6 z  + ----- + ----- + 3 a  z  + ---- + ----- + 
      a                                4       2                 3      a
                                      a       a                 a
 
                        10
         9      10   2 z
>   4 a z  + 2 z   + -----
                       2
                      a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 252]], Vassiliev[3][Knot[11, Alternating, 252]]}
Out[15]=   
{1, -1}
In[16]:=
Kh[Knot[11, Alternating, 252]][q, t]
Out[16]=   
           3     1       2       1       5       2       8      5      9
12 q + 10 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    8 q       3         5        5  2       7  2      7  3      9  3
>   --- + 10 q  t + 11 q  t + 9 q  t  + 10 q  t  + 6 q  t  + 9 q  t  + 
     t
 
       9  4      11  4    11  5      13  5    15  6
>   3 q  t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a252
K11a251
K11a251
K11a253
K11a253