In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Show[DrawMorseLink[Knot[11, Alternating, 252]]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | PD[Knot[11, Alternating, 252]] |
Out[3]= | PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7],
> X[18, 9, 19, 10], X[16, 12, 17, 11], X[4, 13, 5, 14], X[20, 16, 21, 15],
> X[22, 17, 1, 18], X[14, 20, 15, 19], X[10, 21, 11, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 252]] |
Out[4]= | GaussCode[1, -4, 2, -7, 3, -1, 4, -2, 5, -11, 6, -3, 7, -10, 8, -6, 9, -5, 10,
> -8, 11, -9] |
In[5]:= | DTCode[Knot[11, Alternating, 252]] |
Out[5]= | DTCode[6, 8, 12, 2, 18, 16, 4, 20, 22, 14, 10] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 252]][t] |
Out[6]= | -4 6 16 27 2 3 4
-31 - t + -- - -- + -- + 27 t - 16 t + 6 t - t
3 2 t
t t |
In[7]:= | Conway[Knot[11, Alternating, 252]][z] |
Out[7]= | 2 6 8
1 + z - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 131], Knot[11, Alternating, 252],
> Knot[11, Alternating, 254]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 252]], KnotSignature[Knot[11, Alternating, 252]]} |
Out[9]= | {131, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 252]][q] |
Out[10]= | -4 3 7 13 2 3 4 5 6 7
-17 - q + -- - -- + -- + 21 q - 21 q + 19 q - 15 q + 9 q - 4 q + q
3 2 q
q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 252], Knot[11, Alternating, 254]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 252]][q] |
Out[12]= | -12 2 4 -2 2 4 6 8 10 12 14
3 - q - -- + -- - q + 3 q - 3 q + 4 q - 5 q + 2 q - q - 2 q +
6 4
q q
16 18 20
> 3 q - 2 q + q |
In[13]:= | HOMFLYPT[Knot[11, Alternating, 252]][a, z] |
Out[13]= | 2 2 4 4
-4 4 2 2 3 z 10 z 2 2 4 3 z 10 z
6 + a - -- - 2 a + 11 z + ---- - ----- - 3 a z + 8 z + ---- - ----- -
2 4 2 4 2
a a a a a
6 6 8
2 4 6 z 5 z z
> a z + 2 z + -- - ---- - --
4 2 2
a a a |
In[14]:= | Kauffman[Knot[11, Alternating, 252]][a, z] |
Out[14]= | 2 2
-4 4 2 2 z 6 z 7 z 3 2 2 z 3 z
6 + a + -- + 2 a - --- - --- - --- - 5 a z - 2 a z - 22 z + ---- - ---- -
2 5 3 a 6 4
a a a a a
2 3 3 3 3
19 z 2 2 z 11 z 23 z 15 z 3 3 3 4
> ----- - 8 a z - -- + ----- + ----- + ----- + 9 a z + 5 a z + 43 z +
2 7 5 3 a
a a a a
4 4 4 4 5 5 5 5
z 7 z 10 z 47 z 2 4 4 z 20 z 27 z 3 z
> -- - ---- + ----- + ----- + 14 a z + ---- - ----- - ----- + ---- +
8 6 4 2 7 5 3 a
a a a a a a a
6 6 6 7 7
5 3 5 6 9 z 22 z 55 z 2 6 14 z z
> 2 a z - 4 a z - 35 z + ---- - ----- - ----- - 11 a z + ----- - -- -
6 4 2 5 3
a a a a a
7 8 8 9 9
26 z 7 3 7 8 14 z 17 z 2 8 8 z 12 z
> ----- - 10 a z + a z + 6 z + ----- + ----- + 3 a z + ---- + ----- +
a 4 2 3 a
a a a
10
9 10 2 z
> 4 a z + 2 z + -----
2
a |
In[15]:= | {Vassiliev[2][Knot[11, Alternating, 252]], Vassiliev[3][Knot[11, Alternating, 252]]} |
Out[15]= | {1, -1} |
In[16]:= | Kh[Knot[11, Alternating, 252]][q, t] |
Out[16]= | 3 1 2 1 5 2 8 5 9
12 q + 10 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- +
9 5 7 4 5 4 5 3 3 3 3 2 2 q t
q t q t q t q t q t q t q t
8 q 3 5 5 2 7 2 7 3 9 3
> --- + 10 q t + 11 q t + 9 q t + 10 q t + 6 q t + 9 q t +
t
9 4 11 4 11 5 13 5 15 6
> 3 q t + 6 q t + q t + 3 q t + q t |