© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a250
K11a250
K11a252
K11a252
K11a251
Knotscape
This page is passe. Go here instead!

   The Knot K11a251

Visit K11a251's page at Knotilus!

Acknowledgement

K11a251 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X12,5,13,6 X2837 X16,10,17,9 X18,11,19,12 X4,13,5,14 X20,15,21,16 X22,18,1,17 X14,19,15,20 X10,21,11,22

Gauss Code: {1, -4, 2, -7, 3, -1, 4, -2, 5, -11, 6, -3, 7, -10, 8, -5, 9, -6, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 12 2 16 18 4 20 22 14 10

Alexander Polynomial: t-4 - 6t-3 + 16t-2 - 27t-1 + 33 - 27t + 16t2 - 6t3 + t4

Conway Polynomial: 1 - z2 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a253, ...}

Determinant and Signature: {133, 0}

Jones Polynomial: q-6 - 3q-5 + 7q-4 - 13q-3 + 18q-2 - 21q-1 + 22 - 19q + 15q2 - 9q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a228, K11a253, ...}

A2 (sl(3)) Invariant: q-18 + 2q-12 - 4q-10 + 2q-8 - 2q-6 - 2q-4 + 4q-2 - 3 + 6q2 - 2q4 + q6 + 2q8 - 3q10 + 2q12 - q14

HOMFLY-PT Polynomial: - a-2 - 3a-2z2 - 3a-2z4 - a-2z6 + 5 + 10z2 + 10z4 + 5z6 + z8 - 5a2 - 11a2z2 - 8a2z4 - 2a2z6 + 2a4 + 3a4z2 + a4z4

Kauffman Polynomial: - a-5z3 + a-5z5 + a-4z2 - 5a-4z4 + 4a-4z6 - a-3z + 5a-3z3 - 12a-3z5 + 8a-3z7 + a-2 - 6a-2z2 + 12a-2z4 - 17a-2z6 + 10a-2z8 - 2a-1z + 7a-1z3 - 6a-1z5 - 5a-1z7 + 7a-1z9 + 5 - 23z2 + 46z4 - 42z6 + 14z8 + 2z10 - 2az - az3 + 16az5 - 24az7 + 12az9 + 5a2 - 24a2z2 + 42a2z4 - 34a2z6 + 9a2z8 + 2a2z10 - 3a3z + 4a3z3 + a3z5 - 8a3z7 + 5a3z9 + 2a4 - 6a4z2 + 10a4z4 - 12a4z6 + 5a4z8 - 2a5z + 6a5z3 - 8a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11251. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         61 
j = 5        93  
j = 3       106   
j = 1      129    
j = -1     1011     
j = -3    811      
j = -5   510       
j = -7  28        
j = -9 15         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 251]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 251]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[16, 10, 17, 9], X[18, 11, 19, 12], X[4, 13, 5, 14], X[20, 15, 21, 16], 
 
>   X[22, 18, 1, 17], X[14, 19, 15, 20], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 251]]
Out[4]=   
GaussCode[1, -4, 2, -7, 3, -1, 4, -2, 5, -11, 6, -3, 7, -10, 8, -5, 9, -6, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 251]]
Out[5]=   
DTCode[6, 8, 12, 2, 16, 18, 4, 20, 22, 14, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 251]][t]
Out[6]=   
      -4   6    16   27              2      3    4
33 + t   - -- + -- - -- - 27 t + 16 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 251]][z]
Out[7]=   
     2      6    8
1 - z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 251], Knot[11, Alternating, 253]}
In[9]:=
{KnotDet[Knot[11, Alternating, 251]], KnotSignature[Knot[11, Alternating, 251]]}
Out[9]=   
{133, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 251]][q]
Out[10]=   
      -6   3    7    13   18   21              2      3      4    5
22 + q   - -- + -- - -- + -- - -- - 19 q + 15 q  - 9 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 228], Knot[11, Alternating, 251], 
 
>   Knot[11, Alternating, 253]}
In[12]:=
A2Invariant[Knot[11, Alternating, 251]][q]
Out[12]=   
      -18    2     4    2    2    2    4       2      4    6      8      10
-3 + q    + --- - --- + -- - -- - -- + -- + 6 q  - 2 q  + q  + 2 q  - 3 q   + 
             12    10    8    6    4    2
            q     q     q    q    q    q
 
       12    14
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 251]][a, z]
Out[13]=   
                                   2                                   4
     -2      2      4       2   3 z        2  2      4  2       4   3 z
5 - a   - 5 a  + 2 a  + 10 z  - ---- - 11 a  z  + 3 a  z  + 10 z  - ---- - 
                                  2                                   2
                                 a                                   a
 
                              6
       2  4    4  4      6   z       2  6    8
>   8 a  z  + a  z  + 5 z  - -- - 2 a  z  + z
                              2
                             a
In[14]:=
Kauffman[Knot[11, Alternating, 251]][a, z]
Out[14]=   
                                                                      2
     -2      2      4   z    2 z              3        5         2   z
5 + a   + 5 a  + 2 a  - -- - --- - 2 a z - 3 a  z - 2 a  z - 23 z  + -- - 
                         3    a                                       4
                        a                                            a
 
       2                                   3      3      3
    6 z        2  2      4  2      6  2   z    5 z    7 z       3      3  3
>   ---- - 24 a  z  - 6 a  z  + 2 a  z  - -- + ---- + ---- - a z  + 4 a  z  + 
      2                                    5     3     a
     a                                    a     a
 
                         4       4                                    5
       5  3       4   5 z    12 z        2  4       4  4      6  4   z
>   6 a  z  + 46 z  - ---- + ----- + 42 a  z  + 10 a  z  - 3 a  z  + -- - 
                        4      2                                      5
                       a      a                                      a
 
        5      5                                          6       6
    12 z    6 z          5    3  5      5  5       6   4 z    17 z
>   ----- - ---- + 16 a z  + a  z  - 8 a  z  - 42 z  + ---- - ----- - 
      3      a                                           4      2
     a                                                  a      a
 
                                     7      7
        2  6       4  6    6  6   8 z    5 z          7      3  7      5  7
>   34 a  z  - 12 a  z  + a  z  + ---- - ---- - 24 a z  - 8 a  z  + 3 a  z  + 
                                    3     a
                                   a
 
                8                          9
        8   10 z       2  8      4  8   7 z          9      3  9      10
>   14 z  + ----- + 9 a  z  + 5 a  z  + ---- + 12 a z  + 5 a  z  + 2 z   + 
              2                          a
             a
 
       2  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 251]], Vassiliev[3][Knot[11, Alternating, 251]]}
Out[15]=   
{-1, 2}
In[16]:=
Kh[Knot[11, Alternating, 251]][q, t]
Out[16]=   
11            1        2        1       5       2       8       5      10
-- + 12 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      8      11    10                3        3  2      5  2      5  3
>   ----- + ---- + --- + 9 q t + 10 q  t + 6 q  t  + 9 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   6 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a251
K11a250
K11a250
K11a252
K11a252