© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a244
K11a244
K11a246
K11a246
K11a245
Knotscape
This page is passe. Go here instead!

   The Knot K11a245

Visit K11a245's page at Knotilus!

Acknowledgement

K11a245 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X20,6,21,5 X22,8,1,7 X16,10,17,9 X18,12,19,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X8,20,9,19 X6,22,7,21

Gauss Code: {1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -5, 9, -6, 10, -3, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 14 20 22 16 18 2 12 10 8 6

Alexander Polynomial: 3t-3 - 9t-2 + 16t-1 - 19 + 16t - 9t2 + 3t3

Conway Polynomial: 1 + 7z2 + 9z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {1066, ...}

Determinant and Signature: {75, 6}

Jones Polynomial: q3 - q4 + 4q5 - 6q6 + 9q7 - 12q8 + 12q9 - 11q10 + 9q11 - 6q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 + 3q14 + q16 + q18 + 2q20 - 3q22 - 2q26 - q28 + 2q30 - q32 + 2q34 - q36 - q38 + q40 - q42

HOMFLY-PT Polynomial: - a-12 - 2a-12z2 - a-12z4 + 2a-10 + 3a-10z2 + 3a-10z4 + a-10z6 - 4a-8 - 2a-8z2 + 2a-8z4 + a-8z6 + 4a-6 + 8a-6z2 + 5a-6z4 + a-6z6

Kauffman Polynomial: - 2a-17z3 + a-17z5 + a-16z2 - 6a-16z4 + 3a-16z6 - 2a-15z + 8a-15z3 - 12a-15z5 + 5a-15z7 - 5a-14z2 + 14a-14z4 - 13a-14z6 + 5a-14z8 + a-13z - 2a-13z3 + 7a-13z5 - 6a-13z7 + 3a-13z9 - a-12 - a-12z2 + 7a-12z4 - 4a-12z6 + a-12z8 + a-12z10 + 5a-11z - 20a-11z3 + 25a-11z5 - 13a-11z7 + 4a-11z9 - 2a-10 + 6a-10z2 - 15a-10z4 + 11a-10z6 - 3a-10z8 + a-10z10 + 6a-9z - 10a-9z3 + 3a-9z5 - a-9z7 + a-9z9 - 4a-8 + 9a-8z2 - 7a-8z4 + a-8z8 + 4a-7z - 2a-7z3 - 2a-7z5 + a-7z7 - 4a-6 + 8a-6z2 - 5a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, 19}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11245. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         41 
j = 23        52  
j = 21       64   
j = 19      65    
j = 17     66     
j = 15    36      
j = 13   36       
j = 11  13        
j = 9  3         
j = 711          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 245]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 245]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[20, 6, 21, 5], X[22, 8, 1, 7], 
 
>   X[16, 10, 17, 9], X[18, 12, 19, 11], X[2, 14, 3, 13], X[12, 16, 13, 15], 
 
>   X[10, 18, 11, 17], X[8, 20, 9, 19], X[6, 22, 7, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 245]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -5, 9, -6, 10, 
 
>   -3, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 245]]
Out[5]=   
DTCode[4, 14, 20, 22, 16, 18, 2, 12, 10, 8, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 245]][t]
Out[6]=   
      3    9    16             2      3
-19 + -- - -- + -- + 16 t - 9 t  + 3 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 245]][z]
Out[7]=   
       2      4      6
1 + 7 z  + 9 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 66], Knot[11, Alternating, 245]}
In[9]:=
{KnotDet[Knot[11, Alternating, 245]], KnotSignature[Knot[11, Alternating, 245]]}
Out[9]=   
{75, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 245]][q]
Out[10]=   
 3    4      5      6      7       8       9       10      11      12      13
q  - q  + 4 q  - 6 q  + 9 q  - 12 q  + 12 q  - 11 q   + 9 q   - 6 q   + 3 q   - 
 
     14
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 245]}
In[12]:=
A2Invariant[Knot[11, Alternating, 245]][q]
Out[12]=   
 10      14    16    18      20      22      26    28      30    32      34
q   + 3 q   + q   + q   + 2 q   - 3 q   - 2 q   - q   + 2 q   - q   + 2 q   - 
 
     36    38    40    42
>   q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 245]][a, z]
Out[13]=   
                           2      2      2      2    4       4      4      4
  -12    2    4    4    2 z    3 z    2 z    8 z    z     3 z    2 z    5 z
-a    + --- - -- + -- - ---- + ---- - ---- + ---- - --- + ---- + ---- + ---- + 
         10    8    6    12     10      8      6     12    10      8      6
        a     a    a    a      a       a      a     a     a       a      a
 
     6     6    6
    z     z    z
>   --- + -- + --
     10    8    6
    a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 245]][a, z]
Out[14]=   
                                                       2       2    2       2
  -12    2    4    4    2 z    z    5 z   6 z   4 z   z     5 z    z     6 z
-a    - --- - -- - -- - --- + --- + --- + --- + --- + --- - ---- - --- + ---- + 
         10    8    6    15    13    11    9     7     16    14     12    10
        a     a    a    a     a     a     a     a     a     a      a     a
 
       2      2      3      3      3       3       3      3      4       4
    9 z    8 z    2 z    8 z    2 z    20 z    10 z    2 z    6 z    14 z
>   ---- + ---- - ---- + ---- - ---- - ----- - ----- - ---- - ---- + ----- + 
      8      6     17     15     13      11      9       7     16      14
     a      a     a      a      a       a       a       a     a       a
 
       4       4      4      4    5        5      5       5      5      5
    7 z    15 z    7 z    5 z    z     12 z    7 z    25 z    3 z    2 z
>   ---- - ----- - ---- - ---- + --- - ----- + ---- + ----- + ---- - ---- + 
     12      10      8      6     17     15     13      11      9      7
    a       a       a      a     a      a      a       a       a      a
 
       6       6      6       6    6      7      7       7    7    7      8
    3 z    13 z    4 z    11 z    z    5 z    6 z    13 z    z    z    5 z
>   ---- - ----- - ---- + ----- + -- + ---- - ---- - ----- - -- + -- + ---- + 
     16      14     12      10     6    15     13      11     9    7    14
    a       a      a       a      a    a      a       a      a    a    a
 
     8       8    8      9      9    9    10    10
    z     3 z    z    3 z    4 z    z    z     z
>   --- - ---- + -- + ---- + ---- + -- + --- + ---
     12    10     8    13     11     9    12    10
    a     a      a    a      a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 245]], Vassiliev[3][Knot[11, Alternating, 245]]}
Out[15]=   
{7, 19}
In[16]:=
Kh[Knot[11, Alternating, 245]][q, t]
Out[16]=   
 5    7    7        9  2    11  2      11  3      13  3      13  4      15  4
q  + q  + q  t + 3 q  t  + q   t  + 3 q   t  + 3 q   t  + 6 q   t  + 3 q   t  + 
 
       15  5      17  5      17  6      19  6      19  7      21  7
>   6 q   t  + 6 q   t  + 6 q   t  + 6 q   t  + 5 q   t  + 6 q   t  + 
 
       21  8      23  8      23  9      25  9    25  10      27  10    29  11
>   4 q   t  + 5 q   t  + 2 q   t  + 4 q   t  + q   t   + 2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a245
K11a244
K11a244
K11a246
K11a246