© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a243
K11a243
K11a245
K11a245
K11a244
Knotscape
This page is passe. Go here instead!

   The Knot K11a244

Visit K11a244's page at Knotilus!

Acknowledgement

K11a244 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X18,6,19,5 X22,8,1,7 X16,10,17,9 X20,12,21,11 X2,14,3,13 X8,16,9,15 X12,18,13,17 X6,20,7,19 X10,22,11,21

Gauss Code: {1, -7, 2, -1, 3, -10, 4, -8, 5, -11, 6, -9, 7, -2, 8, -5, 9, -3, 10, -6, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 14 18 22 16 20 2 8 12 6 10

Alexander Polynomial: 5t-3 - 17t-2 + 32t-1 - 39 + 32t - 17t2 + 5t3

Conway Polynomial: 1 + 9z2 + 13z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {147, 6}

Jones Polynomial: q3 - 3q4 + 9q5 - 14q6 + 20q7 - 24q8 + 24q9 - 21q10 + 16q11 - 10q12 + 4q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 4q14 - q16 + q18 + 5q20 - 4q22 + 4q24 - 3q26 + 2q30 - 4q32 + 3q34 - 3q36 - q38 + 2q40 - q42

HOMFLY-PT Polynomial: - a-12z2 - a-12z4 - 3a-10 - 5a-10z2 + a-10z6 + 3a-8 + 12a-8z2 + 11a-8z4 + 3a-8z6 + a-6 + 3a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: - a-17z3 + a-17z5 + a-16z2 - 4a-16z4 + 4a-16z6 - 4a-15z + 10a-15z3 - 14a-15z5 + 9a-15z7 - 3a-14z2 + 9a-14z4 - 16a-14z6 + 11a-14z8 - 5a-13z + 20a-13z3 - 24a-13z5 + 3a-13z7 + 7a-13z9 + 17a-12z4 - 36a-12z6 + 17a-12z8 + 2a-12z10 - 7a-11z + 25a-11z3 - 20a-11z5 - 10a-11z7 + 12a-11z9 + 3a-10 - 10a-10z2 + 22a-10z4 - 31a-10z6 + 12a-10z8 + 2a-10z10 - 6a-9z + 19a-9z3 - 17a-9z5 - a-9z7 + 5a-9z9 + 3a-8 - 11a-8z2 + 15a-8z4 - 14a-8z6 + 6a-8z8 + 3a-7z3 - 6a-7z5 + 3a-7z7 - a-6 + 3a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 26}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11244. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          3 
j = 25         71 
j = 23        93  
j = 21       127   
j = 19      129    
j = 17     1212     
j = 15    812      
j = 13   612       
j = 11  38        
j = 9  6         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 244]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 244]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[18, 6, 19, 5], X[22, 8, 1, 7], 
 
>   X[16, 10, 17, 9], X[20, 12, 21, 11], X[2, 14, 3, 13], X[8, 16, 9, 15], 
 
>   X[12, 18, 13, 17], X[6, 20, 7, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 244]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -10, 4, -8, 5, -11, 6, -9, 7, -2, 8, -5, 9, -3, 10, 
 
>   -6, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 244]]
Out[5]=   
DTCode[4, 14, 18, 22, 16, 20, 2, 8, 12, 6, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 244]][t]
Out[6]=   
      5    17   32              2      3
-39 + -- - -- + -- + 32 t - 17 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 244]][z]
Out[7]=   
       2       4      6
1 + 9 z  + 13 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 244]}
In[9]:=
{KnotDet[Knot[11, Alternating, 244]], KnotSignature[Knot[11, Alternating, 244]]}
Out[9]=   
{147, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 244]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11       12
q  - 3 q  + 9 q  - 14 q  + 20 q  - 24 q  + 24 q  - 21 q   + 16 q   - 10 q   + 
 
       13    14
>   4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 244]}
In[12]:=
A2Invariant[Knot[11, Alternating, 244]][q]
Out[12]=   
 10      12      14    16    18      20      22      24      26      30
q   - 2 q   + 4 q   - q   + q   + 5 q   - 4 q   + 4 q   - 3 q   + 2 q   - 
 
       32      34      36    38      40    42
>   4 q   + 3 q   - 3 q   - q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 244]][a, z]
Out[13]=   
                  2       2       2      2    4        4      4    6       6
-3    3     -6   z     5 z    12 z    3 z    z     11 z    3 z    z     3 z
--- + -- + a   - --- - ---- + ----- + ---- - --- + ----- + ---- + --- + ---- + 
 10    8          12    10      8       6     12     8       6     10     8
a     a          a     a       a       a     a      a       a     a      a
 
     6
    z
>   --
     6
    a
In[14]:=
Kauffman[Knot[11, Alternating, 244]][a, z]
Out[14]=   
                                          2       2       2       2      2
 3    3     -6   4 z   5 z   7 z   6 z   z     3 z    10 z    11 z    3 z
--- + -- - a   - --- - --- - --- - --- + --- - ---- - ----- - ----- + ---- - 
 10    8          15    13    11    9     16    14      10      8       6
a     a          a     a     a     a     a     a       a       a       a
 
     3        3       3       3       3      3      4      4       4       4
    z     10 z    20 z    25 z    19 z    3 z    4 z    9 z    17 z    22 z
>   --- + ----- + ----- + ----- + ----- + ---- - ---- + ---- + ----- + ----- + 
     17     15      13      11      9       7     16     14      12      10
    a      a       a       a       a       a     a      a       a       a
 
        4      4    5        5       5       5       5      5      6       6
    15 z    3 z    z     14 z    24 z    20 z    17 z    6 z    4 z    16 z
>   ----- - ---- + --- - ----- - ----- - ----- - ----- - ---- + ---- - ----- - 
      8       6     17     15      13      11      9       7     16      14
     a       a     a      a       a       a       a       a     a       a
 
        6       6       6    6      7      7       7    7      7       8
    36 z    31 z    14 z    z    9 z    3 z    10 z    z    3 z    11 z
>   ----- - ----- - ----- + -- + ---- + ---- - ----- - -- + ---- + ----- + 
      12      10      8      6    15     13      11     9     7      14
     a       a       a      a    a      a       a      a     a      a
 
        8       8      8      9       9      9      10      10
    17 z    12 z    6 z    7 z    12 z    5 z    2 z     2 z
>   ----- + ----- + ---- + ---- + ----- + ---- + ----- + -----
      12      10      8     13      11      9      12      10
     a       a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 244]], Vassiliev[3][Knot[11, Alternating, 244]]}
Out[15]=   
{9, 26}
In[16]:=
Kh[Knot[11, Alternating, 244]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 6 q  t  + 3 q   t  + 8 q   t  + 6 q   t  + 12 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6      19  7
>   8 q   t  + 12 q   t  + 12 q   t  + 12 q   t  + 12 q   t  + 9 q   t  + 
 
        21  7      21  8      23  8      23  9      25  9    25  10
>   12 q   t  + 7 q   t  + 9 q   t  + 3 q   t  + 7 q   t  + q   t   + 
 
       27  10    29  11
>   3 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a244
K11a243
K11a243
K11a245
K11a245