© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a232
K11a232
K11a234
K11a234
K11a233
Knotscape
This page is passe. Go here instead!

   The Knot K11a233

Visit K11a233's page at Knotilus!

Acknowledgement

K11a233 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X10,5,11,6 X20,8,21,7 X22,9,1,10 X18,11,19,12 X2,14,3,13 X8,15,9,16 X6,18,7,17 X12,19,13,20 X16,22,17,21

Gauss Code: {1, -7, 2, -1, 3, -9, 4, -8, 5, -3, 6, -10, 7, -2, 8, -11, 9, -6, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 10 20 22 18 2 8 6 12 16

Alexander Polynomial: t-4 - 6t-3 + 19t-2 - 37t-1 + 47 - 37t + 19t2 - 6t3 + t4

Conway Polynomial: 1 + z2 + 3z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {173, 0}

Jones Polynomial: - q-5 + 4q-4 - 10q-3 + 18q-2 - 24q-1 + 28 - 28q + 25q2 - 18q3 + 11q4 - 5q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 4q-10 + 3q-8 + 2q-6 - 4q-4 + 6q-2 - 5 + 4q2 - q6 + 5q8 - 5q10 + 2q12 - 2q16 + q18

HOMFLY-PT Polynomial: a-4z2 + a-4z4 - a-2 - 6a-2z2 - 6a-2z4 - 2a-2z6 + 3 + 10z2 + 11z4 + 5z6 + z8 - a2 - 4a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: - a-6z4 + a-6z6 + 4a-5z3 - 9a-5z5 + 5a-5z7 - 2a-4z2 + 13a-4z4 - 21a-4z6 + 10a-4z8 - 2a-3z + 13a-3z3 - 14a-3z5 - 8a-3z7 + 9a-3z9 + a-2 - 14a-2z2 + 48a-2z4 - 62a-2z6 + 21a-2z8 + 3a-2z10 - 5a-1z + 17a-1z3 - 8a-1z5 - 26a-1z7 + 19a-1z9 + 3 - 21z2 + 56z4 - 65z6 + 24z8 + 3z10 - 5az + 17az3 - 16az5 - 4az7 + 10az9 + a2 - 8a2z2 + 18a2z4 - 21a2z6 + 13a2z8 - 2a3z + 8a3z3 - 12a3z5 + 9a3z7 + a4z2 - 4a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11233. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          4 
j = 9         71 
j = 7        114  
j = 5       147   
j = 3      1411    
j = 1     1414     
j = -1    1115      
j = -3   713       
j = -5  311        
j = -7 17         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 233]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 233]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[10, 5, 11, 6], X[20, 8, 21, 7], 
 
>   X[22, 9, 1, 10], X[18, 11, 19, 12], X[2, 14, 3, 13], X[8, 15, 9, 16], 
 
>   X[6, 18, 7, 17], X[12, 19, 13, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 233]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -9, 4, -8, 5, -3, 6, -10, 7, -2, 8, -11, 9, -6, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 233]]
Out[5]=   
DTCode[4, 14, 10, 20, 22, 18, 2, 8, 6, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 233]][t]
Out[6]=   
      -4   6    19   37              2      3    4
47 + t   - -- + -- - -- - 37 t + 19 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 233]][z]
Out[7]=   
     2      4      6    8
1 + z  + 3 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 233]}
In[9]:=
{KnotDet[Knot[11, Alternating, 233]], KnotSignature[Knot[11, Alternating, 233]]}
Out[9]=   
{173, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 233]][q]
Out[10]=   
      -5   4    10   18   24              2       3       4      5    6
28 - q   + -- - -- + -- - -- - 28 q + 25 q  - 18 q  + 11 q  - 5 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 233]}
In[12]:=
A2Invariant[Knot[11, Alternating, 233]][q]
Out[12]=   
      -14    2     4    3    2    4    6       2    6      8      10      12
-5 - q    + --- - --- + -- + -- - -- + -- + 4 q  - q  + 5 q  - 5 q   + 2 q   - 
             12    10    8    6    4    2
            q     q     q    q    q    q
 
       16    18
>   2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 233]][a, z]
Out[13]=   
                        2      2                      4      4
     -2    2       2   z    6 z       2  2       4   z    6 z       2  4
3 - a   - a  + 10 z  + -- - ---- - 4 a  z  + 11 z  + -- - ---- - 3 a  z  + 
                        4     2                       4     2
                       a     a                       a     a
 
              6
       6   2 z     2  6    8
>   5 z  - ---- - a  z  + z
             2
            a
In[14]:=
Kauffman[Knot[11, Alternating, 233]][a, z]
Out[14]=   
                                                       2       2
     -2    2   2 z   5 z              3         2   2 z    14 z       2  2
3 + a   + a  - --- - --- - 5 a z - 2 a  z - 21 z  - ---- - ----- - 8 a  z  + 
                3     a                               4      2
               a                                     a      a
 
               3       3       3                                        4
     4  2   4 z    13 z    17 z          3      3  3    5  3       4   z
>   a  z  + ---- + ----- + ----- + 17 a z  + 8 a  z  - a  z  + 56 z  - -- + 
              5      3       a                                          6
             a      a                                                  a
 
        4       4                           5       5      5
    13 z    48 z        2  4      4  4   9 z    14 z    8 z          5
>   ----- + ----- + 18 a  z  - 4 a  z  - ---- - ----- - ---- - 16 a z  - 
      4       2                            5      3      a
     a       a                            a      a
 
                                6       6       6                           7
        3  5    5  5       6   z    21 z    62 z        2  6      4  6   5 z
>   12 a  z  + a  z  - 65 z  + -- - ----- - ----- - 21 a  z  + 4 a  z  + ---- - 
                                6     4       2                            5
                               a     a       a                            a
 
       7       7                                  8       8                 9
    8 z    26 z         7      3  7       8   10 z    21 z        2  8   9 z
>   ---- - ----- - 4 a z  + 9 a  z  + 24 z  + ----- + ----- + 13 a  z  + ---- + 
      3      a                                  4       2                  3
     a                                         a       a                  a
 
        9                        10
    19 z          9      10   3 z
>   ----- + 10 a z  + 3 z   + -----
      a                         2
                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 233]], Vassiliev[3][Knot[11, Alternating, 233]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, Alternating, 233]][q, t]
Out[16]=   
15            1        3       1       7       3      11       7      13
-- + 14 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    11                 3         3  2       5  2      5  3       7  3
>   --- + 14 q t + 14 q  t + 11 q  t  + 14 q  t  + 7 q  t  + 11 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   4 q  t  + 7 q  t  + q  t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a233
K11a232
K11a232
K11a234
K11a234