© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a231
K11a231
K11a233
K11a233
K11a232
Knotscape
This page is passe. Go here instead!

   The Knot K11a232

Visit K11a232's page at Knotilus!

Acknowledgement

K11a232 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X10,5,11,6 X16,8,17,7 X22,9,1,10 X18,11,19,12 X2,14,3,13 X20,15,21,16 X6,18,7,17 X12,19,13,20 X8,21,9,22

Gauss Code: {1, -7, 2, -1, 3, -9, 4, -11, 5, -3, 6, -10, 7, -2, 8, -4, 9, -6, 10, -8, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 10 16 22 18 2 20 6 12 8

Alexander Polynomial: - t-4 + 5t-3 - 14t-2 + 26t-1 - 31 + 26t - 14t2 + 5t3 - t4

Conway Polynomial: 1 - z2 - 4z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {123, -2}

Jones Polynomial: q-7 - 3q-6 + 7q-5 - 13q-4 + 17q-3 - 19q-2 + 20q-1 - 17 + 13q - 8q2 + 4q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 - q-18 + 3q-16 - 2q-14 - 2q-12 + 2q-10 - 4q-8 + 4q-6 - 2q-4 + q-2 + 2 - 2q2 + 4q4 - q6 + q10 - q12

HOMFLY-PT Polynomial: - a-2 - 2a-2z2 - a-2z4 + 5 + 11z2 + 8z4 + 2z6 - 5a2 - 16a2z2 - 15a2z4 - 6a2z6 - a2z8 + 2a4 + 6a4z2 + 4a4z4 + a4z6

Kauffman Polynomial: - a-3z + 3a-3z3 - 3a-3z5 + a-3z7 + a-2 - 5a-2z2 + 15a-2z4 - 14a-2z6 + 4a-2z8 - 4a-1z + 9a-1z3 + 3a-1z5 - 13a-1z7 + 5a-1z9 + 5 - 23z2 + 49z4 - 43z6 + 8z8 + 2z10 - 8az + 17az3 + 2az5 - 27az7 + 12az9 + 5a2 - 29a2z2 + 58a2z4 - 56a2z6 + 15a2z8 + 2a2z10 - 9a3z + 29a3z3 - 24a3z5 - 3a3z7 + 7a3z9 + 2a4 - 8a4z2 + 18a4z4 - 21a4z6 + 11a4z8 - 4a5z + 16a5z3 - 17a5z5 + 10a5z7 + 2a6z2 - 5a6z4 + 6a6z6 - 2a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11232. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          3 
j = 5         51 
j = 3        83  
j = 1       95   
j = -1      118    
j = -3     910     
j = -5    810      
j = -7   59       
j = -9  28        
j = -11 15         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 232]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 232]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[10, 5, 11, 6], X[16, 8, 17, 7], 
 
>   X[22, 9, 1, 10], X[18, 11, 19, 12], X[2, 14, 3, 13], X[20, 15, 21, 16], 
 
>   X[6, 18, 7, 17], X[12, 19, 13, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 232]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -9, 4, -11, 5, -3, 6, -10, 7, -2, 8, -4, 9, -6, 10, 
 
>   -8, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 232]]
Out[5]=   
DTCode[4, 14, 10, 16, 22, 18, 2, 20, 6, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 232]][t]
Out[6]=   
       -4   5    14   26              2      3    4
-31 - t   + -- - -- + -- + 26 t - 14 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 232]][z]
Out[7]=   
     2      4      6    8
1 - z  - 4 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 232]}
In[9]:=
{KnotDet[Knot[11, Alternating, 232]], KnotSignature[Knot[11, Alternating, 232]]}
Out[9]=   
{123, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 232]][q]
Out[10]=   
       -7   3    7    13   17   19   20             2      3    4
-17 + q   - -- + -- - -- + -- - -- + -- + 13 q - 8 q  + 4 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 232]}
In[12]:=
A2Invariant[Knot[11, Alternating, 232]][q]
Out[12]=   
     -20    -18    3     2     2     2    4    4    2     -2      2      4
2 + q    - q    + --- - --- - --- + --- - -- + -- - -- + q   - 2 q  + 4 q  - 
                   16    14    12    10    8    6    4
                  q     q     q     q     q    q    q
 
     6    10    12
>   q  + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 232]][a, z]
Out[13]=   
                                   2                                4
     -2      2      4       2   2 z        2  2      4  2      4   z
5 - a   - 5 a  + 2 a  + 11 z  - ---- - 16 a  z  + 6 a  z  + 8 z  - -- - 
                                  2                                 2
                                 a                                 a
 
        2  4      4  4      6      2  6    4  6    2  8
>   15 a  z  + 4 a  z  + 2 z  - 6 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 232]][a, z]
Out[14]=   
                                                                        2
     -2      2      4   z    4 z              3        5         2   5 z
5 + a   + 5 a  + 2 a  - -- - --- - 8 a z - 9 a  z - 4 a  z - 23 z  - ---- - 
                         3    a                                        2
                        a                                             a
 
                                              3      3
        2  2      4  2      6  2    8  2   3 z    9 z          3       3  3
>   29 a  z  - 8 a  z  + 2 a  z  - a  z  + ---- + ---- + 17 a z  + 29 a  z  + 
                                             3     a
                                            a
 
                                     4
        5  3      7  3       4   15 z        2  4       4  4      6  4
>   16 a  z  - 2 a  z  + 49 z  + ----- + 58 a  z  + 18 a  z  - 5 a  z  + 
                                   2
                                  a
 
               5      5
     8  4   3 z    3 z         5       3  5       5  5      7  5       6
>   a  z  - ---- + ---- + 2 a z  - 24 a  z  - 17 a  z  + 3 a  z  - 43 z  - 
              3     a
             a
 
        6                                    7       7
    14 z        2  6       4  6      6  6   z    13 z          7      3  7
>   ----- - 56 a  z  - 21 a  z  + 6 a  z  + -- - ----- - 27 a z  - 3 a  z  + 
      2                                      3     a
     a                                      a
 
                         8                            9
        5  7      8   4 z        2  8       4  8   5 z          9      3  9
>   10 a  z  + 8 z  + ---- + 15 a  z  + 11 a  z  + ---- + 12 a z  + 7 a  z  + 
                        2                           a
                       a
 
       10      2  10
>   2 z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 232]], Vassiliev[3][Knot[11, Alternating, 232]]}
Out[15]=   
{-1, 2}
In[16]:=
Kh[Knot[11, Alternating, 232]][q, t]
Out[16]=   
10   11     1        2        1        5        2       8       5       9
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q     15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q         q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      8      10     9     8 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 9 q t + 5 q t  + 8 q  t  + 3 q  t  + 5 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a232
K11a231
K11a231
K11a233
K11a233