© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a22
K11a22
K11a24
K11a24
K11a23
Knotscape
This page is passe. Go here instead!

   The Knot K11a23

Visit K11a23's page at Knotilus!

Acknowledgement

K11a23 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X14,11,15,12 X6,13,7,14 X22,16,1,15 X20,18,21,17 X10,20,11,19 X16,22,17,21

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -6, 8, -11, 9, -5, 10, -9, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 18 14 6 22 20 10 16

Alexander Polynomial: 2t-3 - 10t-2 + 24t-1 - 31 + 24t - 10t2 + 2t3

Conway Polynomial: 1 + 2z2 + 2z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10117, K11a111, ...}

Determinant and Signature: {103, 2}

Jones Polynomial: - q-2 + 3q-1 - 6 + 11q - 14q2 + 17q3 - 16q4 + 14q5 - 11q6 + 6q7 - 3q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-6 + q-4 - q-2 - 1 + 4q2 - 2q4 + 3q6 + 2q8 + 3q12 - 3q14 + q16 - 2q18 - 3q20 + 2q22 - q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 3a-6 - 4a-6z2 - 2a-6z4 + a-4 + 2a-4z2 + 2a-4z4 + a-4z6 + 3a-2 + 5a-2z2 + 3a-2z4 + a-2z6 - 1 - 2z2 - z4

Kauffman Polynomial: 2a-10z2 - 3a-10z4 + a-10z6 - 3a-9z + 8a-9z3 - 9a-9z5 + 3a-9z7 + a-8 - a-8z2 + 4a-8z4 - 9a-8z6 + 4a-8z8 - 8a-7z + 17a-7z3 - 13a-7z5 - a-7z7 + 3a-7z9 + 3a-6 - 10a-6z2 + 20a-6z4 - 21a-6z6 + 7a-6z8 + a-6z10 - 5a-5z + 11a-5z3 - 4a-5z5 - 7a-5z7 + 6a-5z9 + a-4 - 4a-4z2 + 12a-4z4 - 15a-4z6 + 7a-4z8 + a-4z10 + a-3z + 2a-3z3 - 5a-3z5 + a-3z7 + 3a-3z9 - 3a-2 + 7a-2z2 - 7a-2z4 - a-2z6 + 4a-2z8 + 2a-1z - 2a-1z3 - 4a-1z5 + 4a-1z7 - 1 + 4z2 - 6z4 + 3z6 + az - 2az3 + az5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1123. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19           1
j = 17          2 
j = 15         41 
j = 13        72  
j = 11       74   
j = 9      97    
j = 7     87     
j = 5    69      
j = 3   58       
j = 1  27        
j = -1 14         
j = -3 2          
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 23]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 23]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[18, 10, 19, 9], X[14, 11, 15, 12], X[6, 13, 7, 14], X[22, 16, 1, 15], 
 
>   X[20, 18, 21, 17], X[10, 20, 11, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 23]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -6, 8, -11, 9, -5, 10, 
 
>   -9, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 23]]
Out[5]=   
DTCode[4, 8, 12, 2, 18, 14, 6, 22, 20, 10, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 23]][t]
Out[6]=   
      2    10   24              2      3
-31 + -- - -- + -- + 24 t - 10 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 23]][z]
Out[7]=   
       2      4      6
1 + 2 z  + 2 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 117], Knot[11, Alternating, 23], Knot[11, Alternating, 111]}
In[9]:=
{KnotDet[Knot[11, Alternating, 23]], KnotSignature[Knot[11, Alternating, 23]]}
Out[9]=   
{103, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 23]][q]
Out[10]=   
      -2   3              2       3       4       5       6      7      8    9
-6 - q   + - + 11 q - 14 q  + 17 q  - 16 q  + 14 q  - 11 q  + 6 q  - 3 q  + q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 23]}
In[12]:=
A2Invariant[Knot[11, Alternating, 23]][q]
Out[12]=   
      -6    -4    -2      2      4      6      8      12      14    16
-1 - q   + q   - q   + 4 q  - 2 q  + 3 q  + 2 q  + 3 q   - 3 q   + q   - 
 
       18      20      22    24    28
>   2 q   - 3 q   + 2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 23]][a, z]
Out[13]=   
                                   2      2      2      2           4      4
      -8   3     -4   3       2   z    4 z    2 z    5 z     4   2 z    2 z
-1 + a   - -- + a   + -- - 2 z  + -- - ---- + ---- + ---- - z  - ---- + ---- + 
            6          2           8     6      4      2           6      4
           a          a           a     a      a      a           a      a
 
       4    6    6
    3 z    z    z
>   ---- + -- + --
      2     4    2
     a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 23]][a, z]
Out[14]=   
                                                                        2
      -8   3     -4   3    3 z   8 z   5 z   z    2 z            2   2 z
-1 + a   + -- + a   - -- - --- - --- - --- + -- + --- + a z + 4 z  + ---- - 
            6          2    9     7     5     3    a                  10
           a          a    a     a     a     a                       a
 
     2       2      2      2      3       3       3      3      3
    z    10 z    4 z    7 z    8 z    17 z    11 z    2 z    2 z         3
>   -- - ----- - ---- + ---- + ---- + ----- + ----- + ---- - ---- - 2 a z  - 
     8     6       4      2      9      7       5       3     a
    a     a       a      a      a      a       a       a
 
              4      4       4       4      4      5       5      5      5
       4   3 z    4 z    20 z    12 z    7 z    9 z    13 z    4 z    5 z
>   6 z  - ---- + ---- + ----- + ----- - ---- - ---- - ----- - ---- - ---- - 
            10      8      6       4       2      9      7       5      3
           a       a      a       a       a      a      a       a      a
 
       5                  6       6       6       6    6      7    7      7
    4 z       5      6   z     9 z    21 z    15 z    z    3 z    z    7 z
>   ---- + a z  + 3 z  + --- - ---- - ----- - ----- - -- + ---- - -- - ---- + 
     a                    10     8      6       4      2     9     7     5
                         a      a      a       a      a     a     a     a
 
     7      7      8      8      8      8      9      9      9    10    10
    z    4 z    4 z    7 z    7 z    4 z    3 z    6 z    3 z    z     z
>   -- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + --- + ---
     3    a       8      6      4      2      7      5      3     6     4
    a            a      a      a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 23]], Vassiliev[3][Knot[11, Alternating, 23]]}
Out[15]=   
{2, 1}
In[16]:=
Kh[Knot[11, Alternating, 23]][q, t]
Out[16]=   
         3     1       2      1      4    2 q      3        5        5  2
7 q + 5 q  + ----- + ----- + ---- + --- + --- + 8 q  t + 6 q  t + 9 q  t  + 
              5  3    3  2      2   q t    t
             q  t    q  t    q t
 
       7  2      7  3      9  3      9  4      11  4      11  5      13  5
>   8 q  t  + 7 q  t  + 9 q  t  + 7 q  t  + 7 q   t  + 4 q   t  + 7 q   t  + 
 
       13  6      15  6    15  7      17  7    19  8
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a23
K11a22
K11a22
K11a24
K11a24