© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a21
K11a21
K11a23
K11a23
K11a22
Knotscape
This page is passe. Go here instead!

   The Knot K11a22

Visit K11a22's page at Knotilus!

Acknowledgement

K11a22 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X14,11,15,12 X6,13,7,14 X20,16,21,15 X22,18,1,17 X10,20,11,19 X16,22,17,21

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -6, 8, -11, 9, -5, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 18 14 6 20 22 10 16

Alexander Polynomial: t-4 - 5t-3 + 13t-2 - 20t-1 + 23 - 20t + 13t2 - 5t3 + t4

Conway Polynomial: 1 + 3z2 + 3z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {101, 4}

Jones Polynomial: - q-1 + 3 - 6q + 11q2 - 13q3 + 16q4 - 16q5 + 14q6 - 11q7 + 6q8 - 3q9 + q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-2 + 1 - 2q2 + q4 + 2q6 + 6q10 - q12 + 3q14 - q16 - 3q18 - 4q22 + q24 + q30

HOMFLY-PT Polynomial: 2a-8 + 3a-8z2 + a-8z4 - 8a-6 - 14a-6z2 - 9a-6z4 - 2a-6z6 + 9a-4 + 19a-4z2 + 15a-4z4 + 6a-4z6 + a-4z8 - 2a-2 - 5a-2z2 - 4a-2z4 - a-2z6

Kauffman Polynomial: - a-12z2 + a-12z4 + a-11z - 3a-11z3 + 3a-11z5 + a-10z2 - 4a-10z4 + 5a-10z6 - a-9z + 6a-9z3 - 9a-9z5 + 7a-9z7 + 2a-8 - 3a-8z2 + 6a-8z4 - 10a-8z6 + 7a-8z8 - 11a-7z + 29a-7z3 - 26a-7z5 + 3a-7z7 + 4a-7z9 + 8a-6 - 25a-6z2 + 43a-6z4 - 41a-6z6 + 12a-6z8 + a-6z10 - 14a-5z + 32a-5z3 - 17a-5z5 - 11a-5z7 + 7a-5z9 + 9a-4 - 29a-4z2 + 48a-4z4 - 38a-4z6 + 8a-4z8 + a-4z10 - 7a-3z + 17a-3z3 - 7a-3z5 - 6a-3z7 + 3a-3z9 + 2a-2 - 9a-2z2 + 16a-2z4 - 12a-2z6 + 3a-2z8 - 2a-1z + 5a-1z3 - 4a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1122. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 21           1
j = 19          2 
j = 17         41 
j = 15        72  
j = 13       74   
j = 11      97    
j = 9     77     
j = 7    69      
j = 5   57       
j = 3  27        
j = 1 14         
j = -1 2          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 22]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 22]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[18, 10, 19, 9], X[14, 11, 15, 12], X[6, 13, 7, 14], X[20, 16, 21, 15], 
 
>   X[22, 18, 1, 17], X[10, 20, 11, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 22]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -6, 8, -11, 9, -5, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 22]]
Out[5]=   
DTCode[4, 8, 12, 2, 18, 14, 6, 20, 22, 10, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 22]][t]
Out[6]=   
      -4   5    13   20              2      3    4
23 + t   - -- + -- - -- - 20 t + 13 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 22]][z]
Out[7]=   
       2      4      6    8
1 + 3 z  + 3 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 22]}
In[9]:=
{KnotDet[Knot[11, Alternating, 22]], KnotSignature[Knot[11, Alternating, 22]]}
Out[9]=   
{101, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 22]][q]
Out[10]=   
    1             2       3       4       5       6       7      8      9    10
3 - - - 6 q + 11 q  - 13 q  + 16 q  - 16 q  + 14 q  - 11 q  + 6 q  - 3 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 22]}
In[12]:=
A2Invariant[Knot[11, Alternating, 22]][q]
Out[12]=   
     -2      2    4      6      10    12      14    16      18      22    24
1 - q   - 2 q  + q  + 2 q  + 6 q   - q   + 3 q   - q   - 3 q   - 4 q   + q   + 
 
     30
>   q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 22]][a, z]
Out[13]=   
                       2       2       2      2    4      4       4      4
2    8    9    2    3 z    14 z    19 z    5 z    z    9 z    15 z    4 z
-- - -- + -- - -- + ---- - ----- + ----- - ---- + -- - ---- + ----- - ---- - 
 8    6    4    2     8      6       4       2     8     6      4       2
a    a    a    a     a      a       a       a     a     a      a       a
 
       6      6    6    8
    2 z    6 z    z    z
>   ---- + ---- - -- + --
      6      4     2    4
     a      a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 22]][a, z]
Out[14]=   
                                                          2     2       2
2    8    9    2     z    z    11 z   14 z   7 z   2 z   z     z     3 z
-- + -- + -- + -- + --- - -- - ---- - ---- - --- - --- - --- + --- - ---- - 
 8    6    4    2    11    9     7      5     3     a     12    10     8
a    a    a    a    a     a     a      a     a           a     a      a
 
        2       2      2      3      3       3       3       3      3    4
    25 z    29 z    9 z    3 z    6 z    29 z    32 z    17 z    5 z    z
>   ----- - ----- - ---- - ---- + ---- + ----- + ----- + ----- + ---- + --- - 
      6       4       2     11      9      7       5       3      a      12
     a       a       a     a       a      a       a       a             a
 
       4      4       4       4       4      5      5       5       5      5
    4 z    6 z    43 z    48 z    16 z    3 z    9 z    26 z    17 z    7 z
>   ---- + ---- + ----- + ----- + ----- + ---- - ---- - ----- - ----- - ---- - 
     10      8      6       4       2      11      9      7       5       3
    a       a      a       a       a      a       a      a       a       a
 
       5      6       6       6       6       6      7      7       7      7
    4 z    5 z    10 z    41 z    38 z    12 z    7 z    3 z    11 z    6 z
>   ---- + ---- - ----- - ----- - ----- - ----- + ---- + ---- - ----- - ---- + 
     a      10      8       6       4       2       9      7      5       3
           a       a       a       a       a       a      a      a       a
 
     7      8       8      8      8      9      9      9    10    10
    z    7 z    12 z    8 z    3 z    4 z    7 z    3 z    z     z
>   -- + ---- + ----- + ---- + ---- + ---- + ---- + ---- + --- + ---
    a      8      6       4      2      7      5      3     6     4
          a      a       a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 22]], Vassiliev[3][Knot[11, Alternating, 22]]}
Out[15]=   
{3, 3}
In[16]:=
Kh[Knot[11, Alternating, 22]][q, t]
Out[16]=   
                                           3
   3      5     1      2     q    4 q   2 q       5        7        7  2
7 q  + 5 q  + ----- + ---- + -- + --- + ---- + 7 q  t + 6 q  t + 9 q  t  + 
               3  3      2    2    t     t
              q  t    q t    t
 
       9  2      9  3      11  3      11  4      13  4      13  5      15  5
>   7 q  t  + 7 q  t  + 9 q   t  + 7 q   t  + 7 q   t  + 4 q   t  + 7 q   t  + 
 
       15  6      17  6    17  7      19  7    21  8
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a22
K11a21
K11a21
K11a23
K11a23