© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a223
K11a223
K11a225
K11a225
K11a224
Knotscape
This page is passe. Go here instead!

   The Knot K11a224

Visit K11a224's page at Knotilus!

Acknowledgement

K11a224 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X18,6,19,5 X20,8,21,7 X16,10,17,9 X2,12,3,11 X22,13,1,14 X10,16,11,15 X8,18,9,17 X6,20,7,19 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -3, 10, -4, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 18 20 16 2 22 10 8 6 14

Alexander Polynomial: - 2t-3 + 10t-2 - 20t-1 + 25 - 20t + 10t2 - 2t3

Conway Polynomial: 1 + 2z2 - 2z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1092, K11a153, K11n35, K11n43, ...}

Determinant and Signature: {89, 4}

Jones Polynomial: 1 - 2q + 5q2 - 8q3 + 12q4 - 14q5 + 14q6 - 13q7 + 10q8 - 6q9 + 3q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 + q4 + 2q6 - 2q8 + 3q10 - q12 - q14 + q16 - 3q18 + 2q20 - q22 + q24 + 2q26 - 2q28 + q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 2a-8 + 4a-8z2 + 2a-8z4 - a-6 - a-6z2 - 2a-6z4 - a-6z6 - a-4 - 3a-4z2 - 3a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4

Kauffman Polynomial: - 2a-13z3 + a-13z5 + 2a-12z2 - 6a-12z4 + 3a-12z6 - 2a-11z + 8a-11z3 - 11a-11z5 + 5a-11z7 + a-10 - 3a-10z2 + 9a-10z4 - 10a-10z6 + 5a-10z8 - a-9z + 5a-9z3 - 2a-9z5 - 2a-9z7 + 3a-9z9 + 2a-8 - 10a-8z2 + 16a-8z4 - 11a-8z6 + 4a-8z8 + a-8z10 + 3a-7z - 17a-7z3 + 20a-7z5 - 12a-7z7 + 5a-7z9 + a-6 - 3a-6z2 - a-6z4 - a-6z6 + a-6z8 + a-6z10 + 3a-5z - 8a-5z3 + 4a-5z5 - 3a-5z7 + 2a-5z9 - a-4 + 7a-4z2 - 6a-4z4 - 2a-4z6 + 2a-4z8 + a-3z + 4a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11224. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          2 
j = 19         41 
j = 17        62  
j = 15       74   
j = 13      76    
j = 11     77     
j = 9    57      
j = 7   37       
j = 5  25        
j = 3 14         
j = 1 1          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 224]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 224]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[20, 8, 21, 7], 
 
>   X[16, 10, 17, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[10, 16, 11, 15], 
 
>   X[8, 18, 9, 17], X[6, 20, 7, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 224]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -3, 10, 
 
>   -4, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 224]]
Out[5]=   
DTCode[4, 12, 18, 20, 16, 2, 22, 10, 8, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 224]][t]
Out[6]=   
     2    10   20              2      3
25 - -- + -- - -- - 20 t + 10 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 224]][z]
Out[7]=   
       2      4      6
1 + 2 z  - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 92], Knot[11, Alternating, 153], Knot[11, Alternating, 224], 
 
>   Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]}
In[9]:=
{KnotDet[Knot[11, Alternating, 224]], KnotSignature[Knot[11, Alternating, 224]]}
Out[9]=   
{89, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 224]][q]
Out[10]=   
             2      3       4       5       6       7       8      9      10
1 - 2 q + 5 q  - 8 q  + 12 q  - 14 q  + 14 q  - 13 q  + 10 q  - 6 q  + 3 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 224]}
In[12]:=
A2Invariant[Knot[11, Alternating, 224]][q]
Out[12]=   
     4      6      8      10    12    14    16      18      20    22    24
1 + q  + 2 q  - 2 q  + 3 q   - q   - q   + q   - 3 q   + 2 q   - q   + q   + 
 
       26      28    30    34
>   2 q   - 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 224]][a, z]
Out[13]=   
                               2       2    2      2      2      4      4
  -10   2     -6    -4   2    z     4 z    z    3 z    3 z    2 z    2 z
-a    + -- - a   - a   + -- - --- + ---- - -- - ---- + ---- + ---- - ---- - 
         8                2    10     8     6     4      2      8      6
        a                a    a      a     a     a      a      a      a
 
       4    4    6    6
    3 z    z    z    z
>   ---- + -- - -- - --
      4     2    6    4
     a     a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 224]][a, z]
Out[14]=   
                                                            2      2       2
 -10   2     -6    -4   2    2 z   z    3 z   3 z   z    2 z    3 z    10 z
a    + -- + a   - a   - -- - --- - -- + --- + --- + -- + ---- - ---- - ----- - 
        8                2    11    9    7     5     3    12     10      8
       a                a    a     a    a     a     a    a      a       a
 
       2      2      2      3      3      3       3      3      3      4
    3 z    7 z    5 z    2 z    8 z    5 z    17 z    8 z    4 z    6 z
>   ---- + ---- + ---- - ---- + ---- + ---- - ----- - ---- + ---- - ---- + 
      6      4      2     13     11      9      7       5      3     12
     a      a      a     a      a       a      a       a      a     a
 
       4       4    4      4      4    5        5      5       5      5
    9 z    16 z    z    6 z    4 z    z     11 z    2 z    20 z    4 z
>   ---- + ----- - -- - ---- - ---- + --- - ----- - ---- + ----- + ---- - 
     10      8      6     4      2     13     11      9      7       5
    a       a      a     a      a     a      a       a      a       a
 
       5      6       6       6    6      6    6      7      7       7      7
    6 z    3 z    10 z    11 z    z    2 z    z    5 z    2 z    12 z    3 z
>   ---- + ---- - ----- - ----- - -- - ---- + -- + ---- - ---- - ----- - ---- + 
      3     12      10      8      6     4     2    11      9      7       5
     a     a       a       a      a     a     a    a       a      a       a
 
       7      8      8    8      8      9      9      9    10    10
    2 z    5 z    4 z    z    2 z    3 z    5 z    2 z    z     z
>   ---- + ---- + ---- + -- + ---- + ---- + ---- + ---- + --- + ---
      3     10      8     6     4      9      7      5     8     6
     a     a       a     a     a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 224]], Vassiliev[3][Knot[11, Alternating, 224]]}
Out[15]=   
{2, 5}
In[16]:=
Kh[Knot[11, Alternating, 224]][q, t]
Out[16]=   
                          3
   3      5    1     q   q       5        7        7  2      9  2      9  3
4 q  + 2 q  + ---- + - + -- + 5 q  t + 3 q  t + 7 q  t  + 5 q  t  + 7 q  t  + 
                 2   t   t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   7 q   t  + 7 q   t  + 7 q   t  + 6 q   t  + 7 q   t  + 4 q   t  + 
 
       17  6      17  7      19  7    19  8      21  8    23  9
>   6 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a224
K11a223
K11a223
K11a225
K11a225