© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a222
K11a222
K11a224
K11a224
K11a223
Knotscape
This page is passe. Go here instead!

   The Knot K11a223

Visit K11a223's page at Knotilus!

Acknowledgement

K11a223 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X18,6,19,5 X20,8,21,7 X16,10,17,9 X2,12,3,11 X22,13,1,14 X8,16,9,15 X10,18,11,17 X6,20,7,19 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -11, 8, -5, 9, -3, 10, -4, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 18 20 16 2 22 8 10 6 14

Alexander Polynomial: - t-4 + 5t-3 - 10t-2 + 14t-1 - 15 + 14t - 10t2 + 5t3 - t4

Conway Polynomial: 1 + 3z2 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11n148, ...}

Determinant and Signature: {75, 6}

Jones Polynomial: q - 2q2 + 5q3 - 7q4 + 10q5 - 11q6 + 11q7 - 11q8 + 8q9 - 5q10 + 3q11 - q12

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q4 + 2q8 + q10 + 2q14 - 2q16 + 2q18 - 2q20 - q22 - 2q26 + 2q28 + q32 - q36

HOMFLY-PT Polynomial: - a-10 - 3a-10z2 - a-10z4 + 3a-8 + 11a-8z2 + 9a-8z4 + 2a-8z6 - 5a-6 - 13a-6z2 - 13a-6z4 - 6a-6z6 - a-6z8 + 4a-4 + 8a-4z2 + 5a-4z4 + a-4z6

Kauffman Polynomial: a-15z3 - a-14z2 + 3a-14z4 - 3a-13z3 + 5a-13z5 - 8a-12z4 + 7a-12z6 - 3a-11z + 12a-11z3 - 20a-11z5 + 9a-11z7 + a-10 - 6a-10z2 + 14a-10z4 - 21a-10z6 + 8a-10z8 - 6a-9z + 30a-9z3 - 25a-9z5 - 3a-9z7 + 4a-9z9 + 3a-8 - 22a-8z2 + 55a-8z4 - 44a-8z6 + 8a-8z8 + a-8z10 - 6a-7z + 9a-7z3 + 15a-7z5 - 22a-7z7 + 6a-7z9 + 5a-6 - 27a-6z2 + 43a-6z4 - 22a-6z6 + a-6z8 + a-6z10 - 3a-5z - 5a-5z3 + 15a-5z5 - 10a-5z7 + 2a-5z9 + 4a-4 - 12a-4z2 + 13a-4z4 - 6a-4z6 + a-4z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11223. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 25           1
j = 23          2 
j = 21         31 
j = 19        52  
j = 17       63   
j = 15      55    
j = 13     66     
j = 11    45      
j = 9   36       
j = 7  24        
j = 5 14         
j = 3 1          
j = 11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 223]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 223]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[20, 8, 21, 7], 
 
>   X[16, 10, 17, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[8, 16, 9, 15], 
 
>   X[10, 18, 11, 17], X[6, 20, 7, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 223]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -11, 8, -5, 9, -3, 10, 
 
>   -4, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 223]]
Out[5]=   
DTCode[4, 12, 18, 20, 16, 2, 22, 8, 10, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 223]][t]
Out[6]=   
       -4   5    10   14              2      3    4
-15 - t   + -- - -- + -- + 14 t - 10 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 223]][z]
Out[7]=   
       2      6    8
1 + 3 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 223], Knot[11, NonAlternating, 148]}
In[9]:=
{KnotDet[Knot[11, Alternating, 223]], KnotSignature[Knot[11, Alternating, 223]]}
Out[9]=   
{75, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 223]][q]
Out[10]=   
       2      3      4       5       6       7       8      9      10      11
q - 2 q  + 5 q  - 7 q  + 10 q  - 11 q  + 11 q  - 11 q  + 8 q  - 5 q   + 3 q   - 
 
     12
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 223]}
In[12]:=
A2Invariant[Knot[11, Alternating, 223]][q]
Out[12]=   
 4      8    10      14      16      18      20    22      26      28    32
q  + 2 q  + q   + 2 q   - 2 q   + 2 q   - 2 q   - q   - 2 q   + 2 q   + q   - 
 
     36
>   q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 223]][a, z]
Out[13]=   
                          2       2       2      2    4       4       4
  -10   3    5    4    3 z    11 z    13 z    8 z    z     9 z    13 z
-a    + -- - -- + -- - ---- + ----- - ----- + ---- - --- + ---- - ----- + 
         8    6    4    10      8       6       4     10     8      6
        a    a    a    a       a       a       a     a      a      a
 
       4      6      6    6    8
    5 z    2 z    6 z    z    z
>   ---- + ---- - ---- + -- - --
      4      8      6     4    6
     a      a      a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 223]][a, z]
Out[14]=   
                                               2       2       2       2
 -10   3    5    4    3 z   6 z   6 z   3 z   z     6 z    22 z    27 z
a    + -- + -- + -- - --- - --- - --- - --- - --- - ---- - ----- - ----- - 
        8    6    4    11    9     7     5     14    10      8       6
       a    a    a    a     a     a     a     a     a       a       a
 
        2    3       3       3       3      3      3      4      4       4
    12 z    z     3 z    12 z    30 z    9 z    5 z    3 z    8 z    14 z
>   ----- + --- - ---- + ----- + ----- + ---- - ---- + ---- - ---- + ----- + 
      4      15    13      11      9       7      5     14     12      10
     a      a     a       a       a       a      a     a      a       a
 
        4       4       4      5       5       5       5       5      6
    55 z    43 z    13 z    5 z    20 z    25 z    15 z    15 z    7 z
>   ----- + ----- + ----- + ---- - ----- - ----- + ----- + ----- + ---- - 
      8       6       4      13      11      9       7       5      12
     a       a       a      a       a       a       a       a      a
 
        6       6       6      6      7      7       7       7      8      8
    21 z    44 z    22 z    6 z    9 z    3 z    22 z    10 z    8 z    8 z
>   ----- - ----- - ----- - ---- + ---- - ---- - ----- - ----- + ---- + ---- + 
      10      8       6       4     11      9      7       5      10      8
     a       a       a       a     a       a      a       a      a       a
 
     8    8      9      9      9    10    10
    z    z    4 z    6 z    2 z    z     z
>   -- + -- + ---- + ---- + ---- + --- + ---
     6    4     9      7      5     8     6
    a    a     a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 223]], Vassiliev[3][Knot[11, Alternating, 223]]}
Out[15]=   
{3, 6}
In[16]:=
Kh[Knot[11, Alternating, 223]][q, t]
Out[16]=   
                    3    5
   5      7   q    q    q       7        9        9  2      11  2      11  3
4 q  + 2 q  + -- + -- + -- + 4 q  t + 3 q  t + 6 q  t  + 4 q   t  + 5 q   t  + 
               2   t    t
              t
 
       13  3      13  4      15  4      15  5      17  5      17  6
>   6 q   t  + 6 q   t  + 5 q   t  + 5 q   t  + 6 q   t  + 3 q   t  + 
 
       19  6      19  7      21  7    21  8      23  8    25  9
>   5 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a223
K11a222
K11a222
K11a224
K11a224