© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a215
K11a215
K11a217
K11a217
K11a216
Knotscape
This page is passe. Go here instead!

   The Knot K11a216

Visit K11a216's page at Knotilus!

Acknowledgement

K11a216 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X18,6,19,5 X14,7,15,8 X20,10,21,9 X2,12,3,11 X22,13,1,14 X8,15,9,16 X10,18,11,17 X6,20,7,19 X16,21,17,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, -5, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 18 14 20 2 22 8 10 6 16

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 31t-1 - 37 + 31t - 17t2 + 6t3 - t4

Conway Polynomial: 1 + z2 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a196, K11a286, ...}

Determinant and Signature: {147, 2}

Jones Polynomial: q-3 - 4q-2 + 9q-1 - 15 + 21q - 23q2 + 24q3 - 21q4 + 15q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a196, ...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 3q-4 - 2q-2 - 1 + 4q2 - 4q4 + 6q6 - 2q8 + q10 + q12 - 4q14 + 4q16 - 2q18 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 2a-4 + 8a-4z2 + 7a-4z4 + 2a-4z6 - a-2 - 8a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 1 + 3z2 + 3z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 4a-8z6 - 2a-7z + 7a-7z3 - 12a-7z5 + 8a-7z7 + a-6 - 4a-6z2 + 10a-6z4 - 15a-6z6 + 10a-6z8 - 4a-5z + 18a-5z3 - 18a-5z5 + 7a-5z9 + 2a-4 - 15a-4z2 + 41a-4z4 - 47a-4z6 + 18a-4z8 + 2a-4z10 - 4a-3z + 16a-3z3 - 9a-3z5 - 16a-3z7 + 13a-3z9 + a-2 - 15a-2z2 + 38a-2z4 - 44a-2z6 + 15a-2z8 + 2a-2z10 - 3a-1z + 12a-1z3 - 13a-1z5 - 4a-1z7 + 6a-1z9 + 1 - 4z2 + 10z4 - 15z6 + 7z8 - az + 6az3 - 9az5 + 4az7 + a2z2 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11216. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        93  
j = 9       126   
j = 7      129    
j = 5     1112     
j = 3    1012      
j = 1   612       
j = -1  39        
j = -3 16         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 216]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 216]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[14, 7, 15, 8], 
 
>   X[20, 10, 21, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[8, 15, 9, 16], 
 
>   X[10, 18, 11, 17], X[6, 20, 7, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 216]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, 
 
>   -5, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 216]]
Out[5]=   
DTCode[4, 12, 18, 14, 20, 2, 22, 8, 10, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 216]][t]
Out[6]=   
       -4   6    17   31              2      3    4
-37 - t   + -- - -- + -- + 31 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 216]][z]
Out[7]=   
     2    4      6    8
1 + z  - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 196], Knot[11, Alternating, 216], 
 
>   Knot[11, Alternating, 286]}
In[9]:=
{KnotDet[Knot[11, Alternating, 216]], KnotSignature[Knot[11, Alternating, 216]]}
Out[9]=   
{147, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 216]][q]
Out[10]=   
       -3   4    9              2       3       4       5      6      7    8
-15 + q   - -- + - + 21 q - 23 q  + 24 q  - 21 q  + 15 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 196], Knot[11, Alternating, 216]}
In[12]:=
A2Invariant[Knot[11, Alternating, 216]][q]
Out[12]=   
      -8   2    3    2       2      4      6      8    10    12      14
-1 + q   - -- + -- - -- + 4 q  - 4 q  + 6 q  - 2 q  + q   + q   - 4 q   + 
            6    4    2
           q    q    q
 
       16      18    22    24
>   4 q   - 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 216]][a, z]
Out[13]=   
                               2      2      2           4      4       4
     -6   2     -2      2   2 z    8 z    8 z       4   z    7 z    10 z
1 - a   + -- - a   + 3 z  - ---- + ---- - ---- + 3 z  - -- + ---- - ----- + 
           4                  6      4      2            6     4      2
          a                  a      a      a            a     a      a
 
            6      6    8
     6   2 z    5 z    z
>   z  + ---- - ---- - --
           4      2     2
          a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 216]][a, z]
Out[14]=   
                                                           2      2       2
     -6   2     -2   2 z   4 z   4 z   3 z            2   z    4 z    15 z
1 + a   + -- + a   - --- - --- - --- - --- - a z - 4 z  + -- - ---- - ----- - 
           4          7     5     3     a                  8     6      4
          a          a     a     a                        a     a      a
 
        2            3      3       3       3       3                       4
    15 z     2  2   z    7 z    18 z    16 z    12 z         3       4   5 z
>   ----- + a  z  - -- + ---- + ----- + ----- + ----- + 6 a z  + 10 z  - ---- + 
      2              9     7      5       3       a                        8
     a              a     a      a       a                                a
 
        4       4       4              5       5       5      5       5
    10 z    41 z    38 z       2  4   z    12 z    18 z    9 z    13 z
>   ----- + ----- + ----- - 2 a  z  + -- - ----- - ----- - ---- - ----- - 
      6       4       2                9     7       5       3      a
     a       a       a                a     a       a       a
 
                        6       6       6       6              7       7
         5       6   4 z    15 z    47 z    44 z     2  6   8 z    16 z
>   9 a z  - 15 z  + ---- - ----- - ----- - ----- + a  z  + ---- - ----- - 
                       8      6       4       2               7      3
                      a      a       a       a               a      a
 
       7                       8       8       8      9       9      9
    4 z         7      8   10 z    18 z    15 z    7 z    13 z    6 z
>   ---- + 4 a z  + 7 z  + ----- + ----- + ----- + ---- + ----- + ---- + 
     a                       6       4       2       5      3      a
                            a       a       a       a      a
 
       10      10
    2 z     2 z
>   ----- + -----
      4       2
     a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 216]], Vassiliev[3][Knot[11, Alternating, 216]]}
Out[15]=   
{1, 2}
In[16]:=
Kh[Knot[11, Alternating, 216]][q, t]
Out[16]=   
           3     1       3       1       6      3      9    6 q       3
12 q + 10 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 12 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   11 q  t + 12 q  t  + 12 q  t  + 9 q  t  + 12 q  t  + 6 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a216
K11a215
K11a215
K11a217
K11a217