© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a214
K11a214
K11a216
K11a216
K11a215
Knotscape
This page is passe. Go here instead!

   The Knot K11a215

Visit K11a215's page at Knotilus!

Acknowledgement

K11a215 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X18,6,19,5 X14,7,15,8 X16,10,17,9 X2,12,3,11 X22,13,1,14 X20,16,21,15 X10,18,11,17 X6,20,7,19 X8,21,9,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -11, 5, -9, 6, -2, 7, -4, 8, -5, 9, -3, 10, -8, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 18 14 16 2 22 20 10 6 8

Alexander Polynomial: t-4 - 6t-3 + 17t-2 - 27t-1 + 31 - 27t + 17t2 - 6t3 + t4

Conway Polynomial: 1 + 3z2 + z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {133, 4}

Jones Polynomial: - q-1 + 4 - 8q + 14q2 - 18q3 + 21q4 - 21q5 + 19q6 - 14q7 + 8q8 - 4q9 + q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-2 + 2 - 2q2 + 2q4 + 2q6 - 2q8 + 5q10 - 4q12 + 3q14 - q18 + 3q20 - 4q22 + q24 - q26 - q28 + q30

HOMFLY-PT Polynomial: 2a-8z2 + a-8z4 - 2a-6 - 7a-6z2 - 7a-6z4 - 2a-6z6 + 3a-4 + 10a-4z2 + 10a-4z4 + 5a-4z6 + a-4z8 - 2a-2z2 - 3a-2z4 - a-2z6

Kauffman Polynomial: a-12z4 - 2a-11z3 + 4a-11z5 + a-10z2 - 6a-10z4 + 8a-10z6 + 6a-9z3 - 15a-9z5 + 12a-9z7 - 2a-8z2 + 11a-8z4 - 21a-8z6 + 13a-8z8 - 5a-7z + 23a-7z3 - 26a-7z5 - 2a-7z7 + 8a-7z9 + 2a-6 - 18a-6z2 + 56a-6z4 - 64a-6z6 + 19a-6z8 + 2a-6z10 - 8a-5z + 22a-5z3 - 3a-5z5 - 27a-5z7 + 13a-5z9 + 3a-4 - 21a-4z2 + 54a-4z4 - 49a-4z6 + 10a-4z8 + 2a-4z10 - 4a-3z + 10a-3z3 + a-3z5 - 12a-3z7 + 5a-3z9 - 6a-2z2 + 16a-2z4 - 14a-2z6 + 4a-2z8 - a-1z + 3a-1z3 - 3a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11215. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 21           1
j = 19          3 
j = 17         51 
j = 15        93  
j = 13       105   
j = 11      119    
j = 9     1010     
j = 7    811      
j = 5   610       
j = 3  39        
j = 1 15         
j = -1 3          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 215]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 215]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[18, 6, 19, 5], X[14, 7, 15, 8], 
 
>   X[16, 10, 17, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[20, 16, 21, 15], 
 
>   X[10, 18, 11, 17], X[6, 20, 7, 19], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 215]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -11, 5, -9, 6, -2, 7, -4, 8, -5, 9, -3, 10, 
 
>   -8, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 215]]
Out[5]=   
DTCode[4, 12, 18, 14, 16, 2, 22, 20, 10, 6, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 215]][t]
Out[6]=   
      -4   6    17   27              2      3    4
31 + t   - -- + -- - -- - 27 t + 17 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 215]][z]
Out[7]=   
       2    4      6    8
1 + 3 z  + z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 215]}
In[9]:=
{KnotDet[Knot[11, Alternating, 215]], KnotSignature[Knot[11, Alternating, 215]]}
Out[9]=   
{133, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 215]][q]
Out[10]=   
    1             2       3       4       5       6       7      8      9    10
4 - - - 8 q + 14 q  - 18 q  + 21 q  - 21 q  + 19 q  - 14 q  + 8 q  - 4 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 215]}
In[12]:=
A2Invariant[Knot[11, Alternating, 215]][q]
Out[12]=   
     -2      2      4      6      8      10      12      14    18      20
2 - q   - 2 q  + 2 q  + 2 q  - 2 q  + 5 q   - 4 q   + 3 q   - q   + 3 q   - 
 
       22    24    26    28    30
>   4 q   + q   - q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 215]][a, z]
Out[13]=   
             2      2       2      2    4      4       4      4      6      6
-2   3    2 z    7 z    10 z    2 z    z    7 z    10 z    3 z    2 z    5 z
-- + -- + ---- - ---- + ----- - ---- + -- - ---- + ----- - ---- - ---- + ---- - 
 6    4     8      6      4       2     8     6      4       2      6      4
a    a     a      a      a       a     a     a      a       a      a      a
 
     6    8
    z    z
>   -- + --
     2    4
    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 215]][a, z]
Out[14]=   
                                 2       2       2       2      2      3
2    3    5 z   8 z   4 z   z   z     2 z    18 z    21 z    6 z    2 z
-- + -- - --- - --- - --- - - + --- - ---- - ----- - ----- - ---- - ---- + 
 6    4    7     5     3    a    10     8      6       4       2     11
a    a    a     a     a         a      a      a       a       a     a
 
       3       3       3       3      3    4       4       4       4       4
    6 z    23 z    22 z    10 z    3 z    z     6 z    11 z    56 z    54 z
>   ---- + ----- + ----- + ----- + ---- + --- - ---- + ----- + ----- + ----- + 
      9      7       5       3      a      12    10      8       6       4
     a      a       a       a             a     a       a       a       a
 
        4      5       5       5      5    5      5      6       6       6
    16 z    4 z    15 z    26 z    3 z    z    3 z    8 z    21 z    64 z
>   ----- + ---- - ----- - ----- - ---- + -- - ---- + ---- - ----- - ----- - 
      2      11      9       7       5     3    a      10      8       6
     a      a       a       a       a     a           a       a       a
 
        6       6       7      7       7       7    7       8       8       8
    49 z    14 z    12 z    2 z    27 z    12 z    z    13 z    19 z    10 z
>   ----- - ----- + ----- - ---- - ----- - ----- + -- + ----- + ----- + ----- + 
      4       2       9       7      5       3     a      8       6       4
     a       a       a       a      a       a            a       a       a
 
       8      9       9      9      10      10
    4 z    8 z    13 z    5 z    2 z     2 z
>   ---- + ---- + ----- + ---- + ----- + -----
      2      7      5       3      6       4
     a      a      a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 215]], Vassiliev[3][Knot[11, Alternating, 215]]}
Out[15]=   
{3, 5}
In[16]:=
Kh[Knot[11, Alternating, 215]][q, t]
Out[16]=   
                                           3
   3      5     1      3     q    5 q   3 q        5        7         7  2
9 q  + 6 q  + ----- + ---- + -- + --- + ---- + 10 q  t + 8 q  t + 11 q  t  + 
               3  3      2    2    t     t
              q  t    q t    t
 
        9  2       9  3       11  3      11  4       13  4      13  5
>   10 q  t  + 10 q  t  + 11 q   t  + 9 q   t  + 10 q   t  + 5 q   t  + 
 
       15  5      15  6      17  6    17  7      19  7    21  8
>   9 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a215
K11a214
K11a214
K11a216
K11a216