© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a157
K11a157
K11a159
K11a159
K11a158
Knotscape
This page is passe. Go here instead!

   The Knot K11a158

Visit K11a158's page at Knotilus!

Acknowledgement

K11a158 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,5,19,6 X14,7,15,8 X2,10,3,9 X16,11,17,12 X20,14,21,13 X8,15,9,16 X22,17,1,18 X6,19,7,20 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -4, 8, -6, 9, -3, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 18 14 2 16 20 8 22 6 12

Alexander Polynomial: - t-4 + 5t-3 - 14t-2 + 25t-1 - 29 + 25t - 14t2 + 5t3 - t4

Conway Polynomial: 1 - 2z2 - 4z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a34, ...}

Determinant and Signature: {119, -2}

Jones Polynomial: q-7 - 3q-6 + 7q-5 - 12q-4 + 16q-3 - 19q-2 + 19q-1 - 16 + 13q - 8q2 + 4q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 - q-18 + 3q-16 - q-14 - q-12 + 2q-10 - 5q-8 + 2q-6 - 3q-4 + q-2 + 3 - q2 + 4q4 - q6 + q10 - q12

HOMFLY-PT Polynomial: - a-2 - 2a-2z2 - a-2z4 + 6 + 11z2 + 8z4 + 2z6 - 7a2 - 17a2z2 - 15a2z4 - 6a2z6 - a2z8 + 3a4 + 6a4z2 + 4a4z4 + a4z6

Kauffman Polynomial: - a-3z + 3a-3z3 - 3a-3z5 + a-3z7 + a-2 - 6a-2z2 + 15a-2z4 - 14a-2z6 + 4a-2z8 - 3a-1z + 9a-1z3 + 2a-1z5 - 13a-1z7 + 5a-1z9 + 6 - 27z2 + 56z4 - 46z6 + 8z8 + 2z10 - 5az + 10az3 + 10az5 - 30az7 + 12az9 + 7a2 - 34a2z2 + 65a2z4 - 57a2z6 + 14a2z8 + 2a2z10 - 7a3z + 18a3z3 - 12a3z5 - 7a3z7 + 7a3z9 + 3a4 - 9a4z2 + 17a4z4 - 19a4z6 + 10a4z8 - 4a5z + 12a5z3 - 14a5z5 + 9a5z7 + 3a6z2 - 6a6z4 + 6a6z6 - 2a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11158. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          3 
j = 5         51 
j = 3        83  
j = 1       85   
j = -1      118    
j = -3     99     
j = -5    710      
j = -7   59       
j = -9  27        
j = -11 15         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 158]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 158]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 5, 19, 6], X[14, 7, 15, 8], 
 
>   X[2, 10, 3, 9], X[16, 11, 17, 12], X[20, 14, 21, 13], X[8, 15, 9, 16], 
 
>   X[22, 17, 1, 18], X[6, 19, 7, 20], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 158]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -4, 8, -6, 9, -3, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 158]]
Out[5]=   
DTCode[4, 10, 18, 14, 2, 16, 20, 8, 22, 6, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 158]][t]
Out[6]=   
       -4   5    14   25              2      3    4
-29 - t   + -- - -- + -- + 25 t - 14 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 158]][z]
Out[7]=   
       2      4      6    8
1 - 2 z  - 4 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 34], Knot[11, Alternating, 158]}
In[9]:=
{KnotDet[Knot[11, Alternating, 158]], KnotSignature[Knot[11, Alternating, 158]]}
Out[9]=   
{119, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 158]][q]
Out[10]=   
       -7   3    7    12   16   19   19             2      3    4
-16 + q   - -- + -- - -- + -- - -- + -- + 13 q - 8 q  + 4 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 158]}
In[12]:=
A2Invariant[Knot[11, Alternating, 158]][q]
Out[12]=   
     -20    -18    3     -14    -12    2    5    2    3     -2    2      4
3 + q    - q    + --- - q    - q    + --- - -- + -- - -- + q   - q  + 4 q  - 
                   16                  10    8    6    4
                  q                   q     q    q    q
 
     6    10    12
>   q  + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 158]][a, z]
Out[13]=   
                                   2                                4
     -2      2      4       2   2 z        2  2      4  2      4   z
6 - a   - 7 a  + 3 a  + 11 z  - ---- - 17 a  z  + 6 a  z  + 8 z  - -- - 
                                  2                                 2
                                 a                                 a
 
        2  4      4  4      6      2  6    4  6    2  8
>   15 a  z  + 4 a  z  + 2 z  - 6 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 158]][a, z]
Out[14]=   
                                                                        2
     -2      2      4   z    3 z              3        5         2   6 z
6 + a   + 7 a  + 3 a  - -- - --- - 5 a z - 7 a  z - 4 a  z - 27 z  - ---- - 
                         3    a                                        2
                        a                                             a
 
                                              3      3
        2  2      4  2      6  2    8  2   3 z    9 z          3       3  3
>   34 a  z  - 9 a  z  + 3 a  z  - a  z  + ---- + ---- + 10 a z  + 18 a  z  + 
                                             3     a
                                            a
 
                                     4
        5  3      7  3       4   15 z        2  4       4  4      6  4
>   12 a  z  - 2 a  z  + 56 z  + ----- + 65 a  z  + 17 a  z  - 6 a  z  + 
                                   2
                                  a
 
               5      5
     8  4   3 z    2 z          5       3  5       5  5      7  5       6
>   a  z  - ---- + ---- + 10 a z  - 12 a  z  - 14 a  z  + 3 a  z  - 46 z  - 
              3     a
             a
 
        6                                    7       7
    14 z        2  6       4  6      6  6   z    13 z          7      3  7
>   ----- - 57 a  z  - 19 a  z  + 6 a  z  + -- - ----- - 30 a z  - 7 a  z  + 
      2                                      3     a
     a                                      a
 
                        8                            9
       5  7      8   4 z        2  8       4  8   5 z          9      3  9
>   9 a  z  + 8 z  + ---- + 14 a  z  + 10 a  z  + ---- + 12 a z  + 7 a  z  + 
                       2                           a
                      a
 
       10      2  10
>   2 z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 158]], Vassiliev[3][Knot[11, Alternating, 158]]}
Out[15]=   
{-2, 3}
In[16]:=
Kh[Knot[11, Alternating, 158]][q, t]
Out[16]=   
9    11     1        2        1        5        2       7       5       9
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q     15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q         q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      10     9     8 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 8 q t + 5 q t  + 8 q  t  + 3 q  t  + 5 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a158
K11a157
K11a157
K11a159
K11a159