© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a156
K11a156
K11a158
K11a158
K11a157
Knotscape
This page is passe. Go here instead!

   The Knot K11a157

Visit K11a157's page at Knotilus!

Acknowledgement

K11a157 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X18,5,19,6 X12,8,13,7 X16,10,17,9 X2,11,3,12 X20,13,21,14 X8,16,9,15 X22,17,1,18 X6,19,7,20 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -4, 7, -11, 8, -5, 9, -3, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 18 12 16 2 20 8 22 6 14

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 28t-1 - 33 + 28t - 16t2 + 6t3 - t4

Conway Polynomial: 1 + 2z2 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a264, K11a305, ...}

Determinant and Signature: {135, -2}

Jones Polynomial: - q-8 + 3q-7 - 8q-6 + 14q-5 - 18q-4 + 22q-3 - 22q-2 + 19q-1 - 14 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-24 - q-20 - 3q-18 + 4q-16 - q-14 + 4q-12 + 3q-10 - 3q-8 + 3q-6 - 6q-4 + 3q-2 - q2 + 3q4 - 2q6 + q8

HOMFLY-PT Polynomial: 2 + 3z2 + 3z4 + z6 - 5a2 - 10a2z2 - 10a2z4 - 5a2z6 - a2z8 + 7a4 + 12a4z2 + 8a4z4 + 2a4z6 - 3a6 - 3a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 2a-2z4 + a-2z6 - a-1z + 5a-1z3 - 9a-1z5 + 4a-1z7 + 2 - 4z2 + 10z4 - 16z6 + 7z8 - 2az + 8az3 - 7az5 - 7az7 + 6az9 + 5a2 - 20a2z2 + 38a2z4 - 39a2z6 + 12a2z8 + 2a2z10 - 3a3z + 8a3z3 + 4a3z5 - 20a3z7 + 12a3z9 + 7a4 - 28a4z2 + 46a4z4 - 39a4z6 + 13a4z8 + 2a4z10 - 5a5z + 13a5z3 - 8a5z5 - 3a5z7 + 6a5z9 + 3a6 - 12a6z2 + 16a6z4 - 14a6z6 + 8a6z8 - 2a7z + 6a7z3 - 9a7z5 + 6a7z7 + a8z2 - 4a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        83  
j = -1       116   
j = -3      129    
j = -5     1010     
j = -7    812      
j = -9   610       
j = -11  28        
j = -13 16         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 157]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 157]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[18, 5, 19, 6], X[12, 8, 13, 7], 
 
>   X[16, 10, 17, 9], X[2, 11, 3, 12], X[20, 13, 21, 14], X[8, 16, 9, 15], 
 
>   X[22, 17, 1, 18], X[6, 19, 7, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 157]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -4, 7, -11, 8, -5, 9, -3, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 157]]
Out[5]=   
DTCode[4, 10, 18, 12, 16, 2, 20, 8, 22, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 157]][t]
Out[6]=   
       -4   6    16   28              2      3    4
-33 - t   + -- - -- + -- + 28 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 157]][z]
Out[7]=   
       2      6    8
1 + 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 157], Knot[11, Alternating, 264], 
 
>   Knot[11, Alternating, 305]}
In[9]:=
{KnotDet[Knot[11, Alternating, 157]], KnotSignature[Knot[11, Alternating, 157]]}
Out[9]=   
{135, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 157]][q]
Out[10]=   
       -8   3    8    14   18   22   22   19            2    3
-14 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 157]}
In[12]:=
A2Invariant[Knot[11, Alternating, 157]][q]
Out[12]=   
  -24    -20    3     4     -14    4     3    3    3    6    3     2      4
-q    - q    - --- + --- - q    + --- + --- - -- + -- - -- + -- - q  + 3 q  - 
                18    16           12    10    8    6    4    2
               q     q            q     q     q    q    q    q
 
       6    8
>   2 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 157]][a, z]
Out[13]=   
       2      4      6      2       2  2       4  2      6  2      4
2 - 5 a  + 7 a  - 3 a  + 3 z  - 10 a  z  + 12 a  z  - 3 a  z  + 3 z  - 
 
        2  4      4  4    6  4    6      2  6      4  6    2  8
>   10 a  z  + 8 a  z  - a  z  + z  - 5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 157]][a, z]
Out[14]=   
       2      4      6   z              3        5        7      9        2
2 + 5 a  + 7 a  + 3 a  - - - 2 a z - 3 a  z - 5 a  z - 2 a  z + a  z - 4 z  + 
                         a
 
     2                                               3
    z        2  2       4  2       6  2    8  2   5 z         3      3  3
>   -- - 20 a  z  - 28 a  z  - 12 a  z  + a  z  + ---- + 8 a z  + 8 a  z  + 
     2                                             a
    a
 
                                              4
        5  3      7  3      9  3       4   2 z        2  4       4  4
>   13 a  z  + 6 a  z  - 2 a  z  + 10 z  - ---- + 38 a  z  + 46 a  z  + 
                                             2
                                            a
 
                            5
        6  4      8  4   9 z         5      3  5      5  5      7  5    9  5
>   16 a  z  - 4 a  z  - ---- - 7 a z  + 4 a  z  - 8 a  z  - 9 a  z  + a  z  - 
                          a
 
             6                                                 7
        6   z        2  6       4  6       6  6      8  6   4 z         7
>   16 z  + -- - 39 a  z  - 39 a  z  - 14 a  z  + 3 a  z  + ---- - 7 a z  - 
             2                                               a
            a
 
        3  7      5  7      7  7      8       2  8       4  8      6  8
>   20 a  z  - 3 a  z  + 6 a  z  + 7 z  + 12 a  z  + 13 a  z  + 8 a  z  + 
 
         9       3  9      5  9      2  10      4  10
>   6 a z  + 12 a  z  + 6 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 157]], Vassiliev[3][Knot[11, Alternating, 157]]}
Out[15]=   
{2, -5}
In[16]:=
Kh[Knot[11, Alternating, 157]][q, t]
Out[16]=   
9    11     1        2        1        6        2        8        6      10
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      8      12      10      10     12    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 8 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a157
K11a156
K11a156
K11a158
K11a158