© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a14
K11a14
K11a16
K11a16
K11a15
Knotscape
This page is passe. Go here instead!

   The Knot K11a15

Visit K11a15's page at Knotilus!

Acknowledgement

K11a15 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,12,19,11 X6,13,7,14 X20,15,21,16 X22,17,1,18 X10,20,11,19 X16,21,17,22

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 14 18 6 20 22 10 16

Alexander Polynomial: - t-4 + 5t-3 - 13t-2 + 22t-1 - 25 + 22t - 13t2 + 5t3 - t4

Conway Polynomial: 1 - z2 - 3z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {107, -2}

Jones Polynomial: q-7 - 3q-6 + 7q-5 - 12q-4 + 15q-3 - 17q-2 + 17q-1 - 14 + 11q - 6q2 + 3q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 - q-18 + 3q-16 - q-14 - q-12 + q-10 - 5q-8 + 2q-6 - 3q-4 + 2q-2 + 3 + 4q4 - q6 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 8 + 14z2 + 9z4 + 2z6 - 8a2 - 18a2z2 - 15a2z4 - 6a2z6 - a2z8 + 3a4 + 6a4z2 + 4a4z4 + a4z6

Kauffman Polynomial: - 2a-3z + 5a-3z3 - 4a-3z5 + a-3z7 + 2a-2 - 9a-2z2 + 16a-2z4 - 12a-2z6 + 3a-2z8 - 6a-1z + 15a-1z3 - 6a-1z5 - 6a-1z7 + 3a-1z9 + 8 - 31z2 + 54z4 - 42z6 + 9z8 + z10 - 10az + 23az3 - 9az5 - 15az7 + 8az9 + 8a2 - 33a2z2 + 58a2z4 - 52a2z6 + 15a2z8 + a2z10 - 11a3z + 29a3z3 - 25a3z5 + a3z7 + 5a3z9 + 3a4 - 7a4z2 + 13a4z4 - 16a4z6 + 9a4z8 - 5a5z + 14a5z3 - 15a5z5 + 9a5z7 + 3a6z2 - 6a6z4 + 6a6z6 - 2a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          2 
j = 5         41 
j = 3        72  
j = 1       74   
j = -1      107    
j = -3     88     
j = -5    79      
j = -7   58       
j = -9  27        
j = -11 15         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 15]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 15]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[14, 9, 15, 10], X[18, 12, 19, 11], X[6, 13, 7, 14], X[20, 15, 21, 16], 
 
>   X[22, 17, 1, 18], X[10, 20, 11, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 15]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 15]]
Out[5]=   
DTCode[4, 8, 12, 2, 14, 18, 6, 20, 22, 10, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 15]][t]
Out[6]=   
       -4   5    13   22              2      3    4
-25 - t   + -- - -- + -- + 22 t - 13 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 15]][z]
Out[7]=   
     2      4      6    8
1 - z  - 3 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 15]}
In[9]:=
{KnotDet[Knot[11, Alternating, 15]], KnotSignature[Knot[11, Alternating, 15]]}
Out[9]=   
{107, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 15]][q]
Out[10]=   
       -7   3    7    12   15   17   17             2      3    4
-14 + q   - -- + -- - -- + -- - -- + -- + 11 q - 6 q  + 3 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 15]}
In[12]:=
A2Invariant[Knot[11, Alternating, 15]][q]
Out[12]=   
     -20    -18    3     -14    -12    -10   5    2    3    2       4    6    12
3 + q    - q    + --- - q    - q    + q    - -- + -- - -- + -- + 4 q  - q  - q
                   16                         8    6    4    2
                  q                          q    q    q    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 15]][a, z]
Out[13]=   
                                  2                                4
    2       2      4       2   3 z        2  2      4  2      4   z
8 - -- - 8 a  + 3 a  + 14 z  - ---- - 18 a  z  + 6 a  z  + 9 z  - -- - 
     2                           2                                 2
    a                           a                                 a
 
        2  4      4  4      6      2  6    4  6    2  8
>   15 a  z  + 4 a  z  + 2 z  - 6 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 15]][a, z]
Out[14]=   
                                                                          2
    2       2      4   2 z   6 z                3        5         2   9 z
8 + -- + 8 a  + 3 a  - --- - --- - 10 a z - 11 a  z - 5 a  z - 31 z  - ---- - 
     2                  3     a                                          2
    a                  a                                                a
 
                                              3       3
        2  2      4  2      6  2    8  2   5 z    15 z          3       3  3
>   33 a  z  - 7 a  z  + 3 a  z  - a  z  + ---- + ----- + 23 a z  + 29 a  z  + 
                                             3      a
                                            a
 
                                     4
        5  3      7  3       4   16 z        2  4       4  4      6  4
>   14 a  z  - 2 a  z  + 54 z  + ----- + 58 a  z  + 13 a  z  - 6 a  z  + 
                                   2
                                  a
 
               5      5
     8  4   4 z    6 z         5       3  5       5  5      7  5       6
>   a  z  - ---- - ---- - 9 a z  - 25 a  z  - 15 a  z  + 3 a  z  - 42 z  - 
              3     a
             a
 
        6                                    7      7
    12 z        2  6       4  6      6  6   z    6 z          7    3  7
>   ----- - 52 a  z  - 16 a  z  + 6 a  z  + -- - ---- - 15 a z  + a  z  + 
      2                                      3    a
     a                                      a
 
                        8                           9
       5  7      8   3 z        2  8      4  8   3 z         9      3  9
>   9 a  z  + 9 z  + ---- + 15 a  z  + 9 a  z  + ---- + 8 a z  + 5 a  z  + 
                       2                          a
                      a
 
     10    2  10
>   z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 15]], Vassiliev[3][Knot[11, Alternating, 15]]}
Out[15]=   
{-1, 3}
In[16]:=
Kh[Knot[11, Alternating, 15]][q, t]
Out[16]=   
8    10     1        2        1        5        2       7       5       8
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q     15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q         q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      9      8     7 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 7 q t + 4 q t  + 7 q  t  + 2 q  t  + 4 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a15
K11a14
K11a14
K11a16
K11a16