© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a13
K11a13
K11a15
K11a15
K11a14
Knotscape
This page is passe. Go here instead!

   The Knot K11a14

Visit K11a14's page at Knotilus!

Acknowledgement

K11a14 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,11,19,12 X6,13,7,14 X20,16,21,15 X10,17,11,18 X22,20,1,19 X16,22,17,21

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -9, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 14 18 6 20 10 22 16

Alexander Polynomial: t-4 - 5t-3 + 15t-2 - 28t-1 + 35 - 28t + 15t2 - 5t3 + t4

Conway Polynomial: 1 + 3z2 + 5z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {133, 0}

Jones Polynomial: - q-5 + 3q-4 - 8q-3 + 14q-2 - 18q-1 + 22 - 21q + 19q2 - 14q3 + 8q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + q-12 - 4q-10 + q-8 + q-6 - 2q-4 + 7q-2 - 1 + 5q2 - 2q6 + 2q8 - 5q10 + q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 6a-2 - 12a-2z2 - 8a-2z4 - 2a-2z6 + 10 + 20z2 + 16z4 + 6z6 + z8 - 4a2 - 7a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 - 2a-5z + 8a-5z3 - 10a-5z5 + 4a-5z7 + a-4 - 2a-4z2 + 6a-4z4 - 12a-4z6 + 6a-4z8 - 10a-3z + 31a-3z3 - 32a-3z5 + 5a-3z7 + 4a-3z9 + 6a-2 - 21a-2z2 + 41a-2z4 - 46a-2z6 + 17a-2z8 + a-2z10 - 16a-1z + 43a-1z3 - 36a-1z5 - a-1z7 + 9a-1z9 + 10 - 32z2 + 54z4 - 50z6 + 19z8 + z10 - 12az + 29az3 - 24az5 + 4az7 + 5az9 + 4a2 - 13a2z2 + 17a2z4 - 14a2z6 + 8a2z8 - 3a3z + 7a3z3 - 9a3z5 + 6a3z7 + a4z2 - 4a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         51 
j = 7        93  
j = 5       105   
j = 3      119    
j = 1     1110     
j = -1    812      
j = -3   610       
j = -5  28        
j = -7 16         
j = -9 2          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 14]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 14]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[14, 9, 15, 10], X[18, 11, 19, 12], X[6, 13, 7, 14], X[20, 16, 21, 15], 
 
>   X[10, 17, 11, 18], X[22, 20, 1, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 14]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -9, 6, -3, 7, -5, 8, -11, 9, -6, 10, 
 
>   -8, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 14]]
Out[5]=   
DTCode[4, 8, 12, 2, 14, 18, 6, 20, 10, 22, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 14]][t]
Out[6]=   
      -4   5    15   28              2      3    4
35 + t   - -- + -- - -- - 28 t + 15 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 14]][z]
Out[7]=   
       2      4      6    8
1 + 3 z  + 5 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 14]}
In[9]:=
{KnotDet[Knot[11, Alternating, 14]], KnotSignature[Knot[11, Alternating, 14]]}
Out[9]=   
{133, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 14]][q]
Out[10]=   
      -5   3    8    14   18              2       3      4      5    6
22 - q   + -- - -- + -- - -- - 21 q + 19 q  - 14 q  + 8 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 14]}
In[12]:=
A2Invariant[Knot[11, Alternating, 14]][q]
Out[12]=   
      -14    -12    4     -8    -6   2    7       2      6      8      10
-1 - q    + q    - --- + q   + q   - -- + -- + 5 q  - 2 q  + 2 q  - 5 q   + 
                    10                4    2
                   q                 q    q
 
     12    16    18
>   q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 14]][a, z]
Out[13]=   
                                  2       2                      4      4
      -4   6       2       2   2 z    12 z       2  2       4   z    8 z
10 + a   - -- - 4 a  + 20 z  + ---- - ----- - 7 a  z  + 16 z  + -- - ---- - 
            2                    4      2                        4     2
           a                    a      a                        a     a
 
                        6
       2  4      6   2 z     2  6    8
>   4 a  z  + 6 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 14]][a, z]
Out[14]=   
      -4   6       2   2 z   10 z   16 z               3      5         2
10 + a   + -- + 4 a  - --- - ---- - ---- - 12 a z - 3 a  z + a  z - 32 z  + 
            2           5      3     a
           a           a      a
 
     2      2       2                         3       3       3
    z    2 z    21 z        2  2    4  2   8 z    31 z    43 z          3
>   -- - ---- - ----- - 13 a  z  + a  z  + ---- + ----- + ----- + 29 a z  + 
     6     4      2                          5      3       a
    a     a      a                          a      a
 
                                   4      4       4
       3  3      5  3       4   2 z    6 z    41 z        2  4      4  4
>   7 a  z  - 2 a  z  + 54 z  - ---- + ---- + ----- + 17 a  z  - 4 a  z  - 
                                  6      4      2
                                 a      a      a
 
        5       5       5                                        6       6
    10 z    32 z    36 z          5      3  5    5  5       6   z    12 z
>   ----- - ----- - ----- - 24 a z  - 9 a  z  + a  z  - 50 z  + -- - ----- - 
      5       3       a                                          6     4
     a       a                                                  a     a
 
        6                           7      7    7
    46 z        2  6      4  6   4 z    5 z    z         7      3  7       8
>   ----- - 14 a  z  + 3 a  z  + ---- + ---- - -- + 4 a z  + 6 a  z  + 19 z  + 
      2                            5      3    a
     a                            a      a
 
       8       8                9      9                   10
    6 z    17 z       2  8   4 z    9 z         9    10   z
>   ---- + ----- + 8 a  z  + ---- + ---- + 5 a z  + z   + ---
      4      2                 3     a                     2
     a      a                 a                           a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 14]], Vassiliev[3][Knot[11, Alternating, 14]]}
Out[15]=   
{3, -1}
In[16]:=
Kh[Knot[11, Alternating, 14]][q, t]
Out[16]=   
12            1        2       1       6       2       8       6      10
-- + 11 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     8                 3        3  2       5  2      5  3      7  3      7  4
>   --- + 10 q t + 11 q  t + 9 q  t  + 10 q  t  + 5 q  t  + 9 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   5 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a14
K11a13
K11a13
K11a15
K11a15