© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a146
K11a146
K11a148
K11a148
K11a147
Knotscape
This page is passe. Go here instead!

   The Knot K11a147

Visit K11a147's page at Knotilus!

Acknowledgement

K11a147 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X16,6,17,5 X20,8,21,7 X2,10,3,9 X22,11,1,12 X18,13,19,14 X8,16,9,15 X12,17,13,18 X6,20,7,19 X14,21,15,22

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -11, 8, -3, 9, -7, 10, -4, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 16 20 2 22 18 8 12 6 14

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 32t-1 - 39 + 32t - 17t2 + 6t3 - t4

Conway Polynomial: 1 + 2z2 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {151, 2}

Jones Polynomial: q-3 - 4q-2 + 9q-1 - 15 + 21q - 24q2 + 25q3 - 21q4 + 16q5 - 10q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a322, ...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 3q-4 - 2q-2 - 1 + 4q2 - 5q4 + 5q6 - 2q8 + 2q10 + 3q12 - 3q14 + 4q16 - 3q18 - q20 + q22 - q24

HOMFLY-PT Polynomial: - 2a-6 - 2a-6z2 - a-6z4 + 4a-4 + 9a-4z2 + 7a-4z4 + 2a-4z6 - 2a-2 - 8a-2z2 - 10a-2z4 - 5a-2z6 - a-2z8 + 1 + 3z2 + 3z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 4a-8z4 + 4a-8z6 - 4a-7z + 10a-7z3 - 14a-7z5 + 9a-7z7 + 2a-6 - 5a-6z2 + 10a-6z4 - 16a-6z6 + 11a-6z8 - 7a-5z + 24a-5z3 - 27a-5z5 + 4a-5z7 + 7a-5z9 + 4a-4 - 14a-4z2 + 34a-4z4 - 45a-4z6 + 19a-4z8 + 2a-4z10 - 5a-3z + 19a-3z3 - 15a-3z5 - 13a-3z7 + 13a-3z9 + 2a-2 - 12a-2z2 + 32a-2z4 - 41a-2z6 + 15a-2z8 + 2a-2z10 - 3a-1z + 12a-1z3 - 12a-1z5 - 4a-1z7 + 6a-1z9 + 1 - 3z2 + 10z4 - 15z6 + 7z8 - az + 6az3 - 9az5 + 4az7 + a2z2 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11147. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         71 
j = 11        93  
j = 9       127   
j = 7      139    
j = 5     1112     
j = 3    1013      
j = 1   612       
j = -1  39        
j = -3 16         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 147]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 147]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[16, 6, 17, 5], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[18, 13, 19, 14], X[8, 16, 9, 15], 
 
>   X[12, 17, 13, 18], X[6, 20, 7, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 147]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -11, 8, -3, 9, -7, 10, 
 
>   -4, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 147]]
Out[5]=   
DTCode[4, 10, 16, 20, 2, 22, 18, 8, 12, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 147]][t]
Out[6]=   
       -4   6    17   32              2      3    4
-39 - t   + -- - -- + -- + 32 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 147]][z]
Out[7]=   
       2    4      6    8
1 + 2 z  - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 147]}
In[9]:=
{KnotDet[Knot[11, Alternating, 147]], KnotSignature[Knot[11, Alternating, 147]]}
Out[9]=   
{151, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 147]][q]
Out[10]=   
       -3   4    9              2       3       4       5       6      7    8
-15 + q   - -- + - + 21 q - 24 q  + 25 q  - 21 q  + 16 q  - 10 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 147], Knot[11, Alternating, 322]}
In[12]:=
A2Invariant[Knot[11, Alternating, 147]][q]
Out[12]=   
      -8   2    3    2       2      4      6      8      10      12      14
-1 + q   - -- + -- - -- + 4 q  - 5 q  + 5 q  - 2 q  + 2 q   + 3 q   - 3 q   + 
            6    4    2
           q    q    q
 
       16      18    20    22    24
>   4 q   - 3 q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 147]][a, z]
Out[13]=   
                             2      2      2           4      4       4
    2    4    2       2   2 z    9 z    8 z       4   z    7 z    10 z     6
1 - -- + -- - -- + 3 z  - ---- + ---- - ---- + 3 z  - -- + ---- - ----- + z  + 
     6    4    2            6      4      2            6     4      2
    a    a    a            a      a      a            a     a      a
 
       6      6    8
    2 z    5 z    z
>   ---- - ---- - --
      4      2     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 147]][a, z]
Out[14]=   
                                                         2      2       2
    2    4    2    4 z   7 z   5 z   3 z            2   z    5 z    14 z
1 + -- + -- + -- - --- - --- - --- - --- - a z - 3 z  + -- - ---- - ----- - 
     6    4    2    7     5     3     a                  8     6      4
    a    a    a    a     a     a                        a     a      a
 
        2            3       3       3       3       3
    12 z     2  2   z    10 z    24 z    19 z    12 z         3       4
>   ----- + a  z  - -- + ----- + ----- + ----- + ----- + 6 a z  + 10 z  - 
      2              9     7       5       3       a
     a              a     a       a       a
 
       4       4       4       4              5       5       5       5
    4 z    10 z    34 z    32 z       2  4   z    14 z    27 z    15 z
>   ---- + ----- + ----- + ----- - 2 a  z  + -- - ----- - ----- - ----- - 
      8      6       4       2                9     7       5       3
     a      a       a       a                a     a       a       a
 
        5                       6       6       6       6              7
    12 z         5       6   4 z    16 z    45 z    41 z     2  6   9 z
>   ----- - 9 a z  - 15 z  + ---- - ----- - ----- - ----- + a  z  + ---- + 
      a                        8      6       4       2               7
                              a      a       a       a               a
 
       7       7      7                       8       8       8      9
    4 z    13 z    4 z         7      8   11 z    19 z    15 z    7 z
>   ---- - ----- - ---- + 4 a z  + 7 z  + ----- + ----- + ----- + ---- + 
      5      3      a                       6       4       2       5
     a      a                              a       a       a       a
 
        9      9      10      10
    13 z    6 z    2 z     2 z
>   ----- + ---- + ----- + -----
      3      a       4       2
     a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 147]], Vassiliev[3][Knot[11, Alternating, 147]]}
Out[15]=   
{2, 4}
In[16]:=
Kh[Knot[11, Alternating, 147]][q, t]
Out[16]=   
           3     1       3       1       6      3      9    6 q       3
12 q + 10 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 13 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   11 q  t + 12 q  t  + 13 q  t  + 9 q  t  + 12 q  t  + 7 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 7 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a147
K11a146
K11a146
K11a148
K11a148