© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a145
K11a145
K11a147
K11a147
K11a146
Knotscape
This page is passe. Go here instead!

   The Knot K11a146

Visit K11a146's page at Knotilus!

Acknowledgement

K11a146 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X16,5,17,6 X18,7,19,8 X14,10,15,9 X2,11,3,12 X20,14,21,13 X22,15,1,16 X6,17,7,18 X12,20,13,19 X8,21,9,22

Gauss Code: {1, -6, 2, -1, 3, -9, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 16 18 14 2 20 22 6 12 8

Alexander Polynomial: - t-4 + 6t-3 - 15t-2 + 25t-1 - 29 + 25t - 15t2 + 6t3 - t4

Conway Polynomial: 1 + 3z2 + z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {123, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 17q-4 + 20q-3 - 19q-2 + 18q-1 - 13 + 8q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a294, ...}

A2 (sl(3)) Invariant: - q-24 - 2q-18 + 3q-16 - 3q-14 + q-12 + 2q-10 - q-8 + 6q-6 - 3q-4 + 3q-2 - 1 - 2q2 + 2q4 - 2q6 + q8

HOMFLY-PT Polynomial: 2z2 + 3z4 + z6 - 6a2z2 - 9a2z4 - 5a2z6 - a2z8 + 3a4 + 10a4z2 + 8a4z4 + 2a4z6 - 2a6 - 3a6z2 - a6z4

Kauffman Polynomial: - 2a-2z4 + a-2z6 + 5a-1z3 - 10a-1z5 + 4a-1z7 - 5z2 + 15z4 - 19z6 + 7z8 + 3az3 + az5 - 11az7 + 6az9 - 14a2z2 + 37a2z4 - 35a2z6 + 9a2z8 + 2a2z10 - 3a3z3 + 18a3z5 - 24a3z7 + 11a3z9 + 3a4 - 16a4z2 + 31a4z4 - 26a4z6 + 8a4z8 + 2a4z10 - 2a5z + 4a5z3 - a5z5 - 4a5z7 + 5a5z9 + 2a6 - 5a6z2 + 6a6z4 - 8a6z6 + 6a6z8 - a7z + 3a7z3 - 7a7z5 + 5a7z7 + 2a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         51 
j = 1        83  
j = -1       105   
j = -3      109    
j = -5     109     
j = -7    710      
j = -9   510       
j = -11  27        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 146]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 146]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[16, 5, 17, 6], X[18, 7, 19, 8], 
 
>   X[14, 10, 15, 9], X[2, 11, 3, 12], X[20, 14, 21, 13], X[22, 15, 1, 16], 
 
>   X[6, 17, 7, 18], X[12, 20, 13, 19], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 146]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -9, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 146]]
Out[5]=   
DTCode[4, 10, 16, 18, 14, 2, 20, 22, 6, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 146]][t]
Out[6]=   
       -4   6    15   25              2      3    4
-29 - t   + -- - -- + -- + 25 t - 15 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 146]][z]
Out[7]=   
       2    4      6    8
1 + 3 z  + z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 146]}
In[9]:=
{KnotDet[Knot[11, Alternating, 146]], KnotSignature[Knot[11, Alternating, 146]]}
Out[9]=   
{123, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 146]][q]
Out[10]=   
       -8   3    7    12   17   20   19   18            2    3
-13 - q   + -- - -- + -- - -- + -- - -- + -- + 8 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 146], Knot[11, Alternating, 294]}
In[12]:=
A2Invariant[Knot[11, Alternating, 146]][q]
Out[12]=   
      -24    2     3     3     -12    2     -8   6    3    3       2      4
-1 - q    - --- + --- - --- + q    + --- - q   + -- - -- + -- - 2 q  + 2 q  - 
             18    16    14           10          6    4    2
            q     q     q            q           q    q    q
 
       6    8
>   2 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 146]][a, z]
Out[13]=   
   4      6      2      2  2       4  2      6  2      4      2  4      4  4
3 a  - 2 a  + 2 z  - 6 a  z  + 10 a  z  - 3 a  z  + 3 z  - 9 a  z  + 8 a  z  - 
 
     6  4    6      2  6      4  6    2  8
>   a  z  + z  - 5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 146]][a, z]
Out[14]=   
   4      6      5      7      9        2       2  2       4  2      6  2
3 a  + 2 a  - 2 a  z - a  z + a  z - 5 z  - 14 a  z  - 16 a  z  - 5 a  z  + 
 
                 3
       8  2   5 z         3      3  3      5  3      7  3      9  3       4
>   2 a  z  + ---- + 3 a z  - 3 a  z  + 4 a  z  + 3 a  z  - 2 a  z  + 15 z  - 
               a
 
       4                                                 5
    2 z        2  4       4  4      6  4      8  4   10 z       5       3  5
>   ---- + 37 a  z  + 31 a  z  + 6 a  z  - 5 a  z  - ----- + a z  + 18 a  z  - 
      2                                                a
     a
 
                                       6
     5  5      7  5    9  5       6   z        2  6       4  6      6  6
>   a  z  - 7 a  z  + a  z  - 19 z  + -- - 35 a  z  - 26 a  z  - 8 a  z  + 
                                       2
                                      a
 
                 7
       8  6   4 z          7       3  7      5  7      7  7      8      2  8
>   3 a  z  + ---- - 11 a z  - 24 a  z  - 4 a  z  + 5 a  z  + 7 z  + 9 a  z  + 
               a
 
       4  8      6  8        9       3  9      5  9      2  10      4  10
>   8 a  z  + 6 a  z  + 6 a z  + 11 a  z  + 5 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 146]], Vassiliev[3][Knot[11, Alternating, 146]]}
Out[15]=   
{3, -5}
In[16]:=
Kh[Knot[11, Alternating, 146]][q, t]
Out[16]=   
9    10     1        2        1        5        2        7        5      10
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10      10      9      10    5 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 8 q t + 3 q t  + 5 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a146
K11a145
K11a145
K11a147
K11a147