© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a133
K11a133
K11a135
K11a135
K11a134
Knotscape
This page is passe. Go here instead!

   The Knot K11a134

Visit K11a134's page at Knotilus!

Acknowledgement

K11a134 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X16,5,17,6 X14,8,15,7 X2,10,3,9 X20,12,21,11 X8,14,9,13 X18,15,19,16 X6,17,7,18 X22,20,1,19 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -11, 7, -4, 8, -3, 9, -8, 10, -6, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 10 16 14 2 20 8 18 6 22 12

Alexander Polynomial: 3t-3 - 13t-2 + 28t-1 - 35 + 28t - 13t2 + 3t3

Conway Polynomial: 1 + 3z2 + 5z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {123, 2}

Jones Polynomial: - q-2 + 3q-1 - 7 + 13q - 16q2 + 20q3 - 20q4 + 17q5 - 13q6 + 8q7 - 4q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-6 + q-4 - q-2 - 2 + 4q2 - 2q4 + 4q6 + 3q8 - q10 + 3q12 - 4q14 + 2q16 - q18 - 3q20 + 2q22 - 2q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 4a-6 - 7a-6z2 - 3a-6z4 + 3a-4 + 9a-4z2 + 7a-4z4 + 2a-4z6 + 2a-2 + 2a-2z2 + 2a-2z4 + a-2z6 - 1 - 2z2 - z4

Kauffman Polynomial: a-10z2 - 2a-10z4 + a-10z6 - 2a-9z + 7a-9z3 - 10a-9z5 + 4a-9z7 + a-8 - a-8z2 + 6a-8z4 - 13a-8z6 + 6a-8z8 - 8a-7z + 25a-7z3 - 25a-7z5 + 2a-7z7 + 4a-7z9 + 4a-6 - 15a-6z2 + 34a-6z4 - 39a-6z6 + 14a-6z8 + a-6z10 - 8a-5z + 27a-5z3 - 22a-5z5 - 4a-5z7 + 8a-5z9 + 3a-4 - 17a-4z2 + 35a-4z4 - 35a-4z6 + 14a-4z8 + a-4z10 - 2a-3z + 12a-3z3 - 14a-3z5 + 3a-3z7 + 4a-3z9 - 2a-2 - a-2z2 + 4a-2z4 - 7a-2z6 + 6a-2z8 + a-1z + a-1z3 - 6a-1z5 + 5a-1z7 - 1 + 3z2 - 5z4 + 3z6 + az - 2az3 + az5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19           1
j = 17          3 
j = 15         51 
j = 13        83  
j = 11       95   
j = 9      118    
j = 7     99     
j = 5    711      
j = 3   69       
j = 1  28        
j = -1 15         
j = -3 2          
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 134]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 134]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[16, 5, 17, 6], X[14, 8, 15, 7], 
 
>   X[2, 10, 3, 9], X[20, 12, 21, 11], X[8, 14, 9, 13], X[18, 15, 19, 16], 
 
>   X[6, 17, 7, 18], X[22, 20, 1, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 134]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -11, 7, -4, 8, -3, 9, -8, 10, 
 
>   -6, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 134]]
Out[5]=   
DTCode[4, 10, 16, 14, 2, 20, 8, 18, 6, 22, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 134]][t]
Out[6]=   
      3    13   28              2      3
-35 + -- - -- + -- + 28 t - 13 t  + 3 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 134]][z]
Out[7]=   
       2      4      6
1 + 3 z  + 5 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 134]}
In[9]:=
{KnotDet[Knot[11, Alternating, 134]], KnotSignature[Knot[11, Alternating, 134]]}
Out[9]=   
{123, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 134]][q]
Out[10]=   
      -2   3              2       3       4       5       6      7      8    9
-7 - q   + - + 13 q - 16 q  + 20 q  - 20 q  + 17 q  - 13 q  + 8 q  - 4 q  + q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 134]}
In[12]:=
A2Invariant[Knot[11, Alternating, 134]][q]
Out[12]=   
      -6    -4    -2      2      4      6      8    10      12      14
-2 - q   + q   - q   + 4 q  - 2 q  + 4 q  + 3 q  - q   + 3 q   - 4 q   + 
 
       16    18      20      22      24    28
>   2 q   - q   - 3 q   + 2 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 134]][a, z]
Out[13]=   
                                  2      2      2      2           4      4
      -8   4    3    2       2   z    7 z    9 z    2 z     4   3 z    7 z
-1 + a   - -- + -- + -- - 2 z  + -- - ---- + ---- + ---- - z  - ---- + ---- + 
            6    4    2           8     6      4      2           6      4
           a    a    a           a     a      a      a           a      a
 
       4      6    6
    2 z    2 z    z
>   ---- + ---- + --
      2      4     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 134]][a, z]
Out[14]=   
                                                                    2     2
      -8   4    3    2    2 z   8 z   8 z   2 z   z            2   z     z
-1 + a   + -- + -- - -- - --- - --- - --- - --- + - + a z + 3 z  + --- - -- - 
            6    4    2    9     7     5     3    a                 10    8
           a    a    a    a     a     a     a                      a     a
 
        2       2    2      3       3       3       3    3
    15 z    17 z    z    7 z    25 z    27 z    12 z    z         3      4
>   ----- - ----- - -- + ---- + ----- + ----- + ----- + -- - 2 a z  - 5 z  - 
      6       4      2     9      7       5       3     a
     a       a      a     a      a       a       a
 
       4      4       4       4      4       5       5       5       5      5
    2 z    6 z    34 z    35 z    4 z    10 z    25 z    22 z    14 z    6 z
>   ---- + ---- + ----- + ----- + ---- - ----- - ----- - ----- - ----- - ---- + 
     10      8      6       4       2      9       7       5       3      a
    a       a      a       a       a      a       a       a       a
 
                   6        6       6       6      6      7      7      7
       5      6   z     13 z    39 z    35 z    7 z    4 z    2 z    4 z
>   a z  + 3 z  + --- - ----- - ----- - ----- - ---- + ---- + ---- - ---- + 
                   10     8       6       4       2      9      7      5
                  a      a       a       a       a      a      a      a
 
       7      7      8       8       8      8      9      9      9    10    10
    3 z    5 z    6 z    14 z    14 z    6 z    4 z    8 z    4 z    z     z
>   ---- + ---- + ---- + ----- + ----- + ---- + ---- + ---- + ---- + --- + ---
      3     a       8      6       4       2      7      5      3     6     4
     a             a      a       a       a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 134]], Vassiliev[3][Knot[11, Alternating, 134]]}
Out[15]=   
{3, 3}
In[16]:=
Kh[Knot[11, Alternating, 134]][q, t]
Out[16]=   
         3     1       2      1      5    2 q      3        5         5  2
8 q + 6 q  + ----- + ----- + ---- + --- + --- + 9 q  t + 7 q  t + 11 q  t  + 
              5  3    3  2      2   q t    t
             q  t    q  t    q t
 
       7  2      7  3       9  3      9  4      11  4      11  5      13  5
>   9 q  t  + 9 q  t  + 11 q  t  + 8 q  t  + 9 q   t  + 5 q   t  + 8 q   t  + 
 
       13  6      15  6    15  7      17  7    19  8
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a134
K11a133
K11a133
K11a135
K11a135