© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a131
K11a131
K11a133
K11a133
K11a132
Knotscape
This page is passe. Go here instead!

   The Knot K11a132

Visit K11a132's page at Knotilus!

Acknowledgement

K11a132 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X16,6,17,5 X12,8,13,7 X18,9,19,10 X2,11,3,12 X20,14,21,13 X6,16,7,15 X22,18,1,17 X8,19,9,20 X14,22,15,21

Gauss Code: {1, -6, 2, -1, 3, -8, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -5, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 16 12 18 2 20 6 22 8 14

Alexander Polynomial: 2t-3 - 13t-2 + 32t-1 - 41 + 32t - 13t2 + 2t3

Conway Polynomial: 1 - 2z2 - z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a6, K11a352, ...}

Determinant and Signature: {135, 2}

Jones Polynomial: q-3 - 3q-2 + 8q-1 - 13 + 18q - 22q2 + 22q3 - 19q4 + 15q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 - q-6 + 4q-4 - q-2 + 3q2 - 6q4 + q6 - 3q8 + q10 + 4q12 - 2q14 + 5q16 - 2q18 - 2q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6 - a-6z2 - a-6z4 + 4a-4 + 4a-4z2 + 2a-4z4 + a-4z6 - 4a-2 - 4a-2z2 + a-2z6 + 1 - 2z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 4a-8z6 - a-7z + 5a-7z3 - 12a-7z5 + 8a-7z7 + a-6 - 5a-6z2 + 12a-6z4 - 17a-6z6 + 10a-6z8 - a-5z + 6a-5z3 - 5a-5z5 - 5a-5z7 + 7a-5z9 + 4a-4 - 21a-4z2 + 42a-4z4 - 40a-4z6 + 14a-4z8 + 2a-4z10 + 3a-3z - 8a-3z3 + 17a-3z5 - 23a-3z7 + 12a-3z9 + 4a-2 - 20a-2z2 + 33a-2z4 - 30a-2z6 + 9a-2z8 + 2a-2z10 + 3a-1z - 4a-1z3 + 2a-1z5 - 7a-1z7 + 5a-1z9 + 1 - 2z2 + 5z4 - 10z6 + 5z8 + 4az3 - 7az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11132. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        93  
j = 9       106   
j = 7      129    
j = 5     1010     
j = 3    812      
j = 1   611       
j = -1  27        
j = -3 16         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 132]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 132]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[16, 6, 17, 5], X[12, 8, 13, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[20, 14, 21, 13], X[6, 16, 7, 15], 
 
>   X[22, 18, 1, 17], X[8, 19, 9, 20], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 132]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -8, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -5, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 132]]
Out[5]=   
DTCode[4, 10, 16, 12, 18, 2, 20, 6, 22, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 132]][t]
Out[6]=   
      2    13   32              2      3
-41 + -- - -- + -- + 32 t - 13 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 132]][z]
Out[7]=   
       2    4      6
1 - 2 z  - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 6], Knot[11, Alternating, 132], 
 
>   Knot[11, Alternating, 352]}
In[9]:=
{KnotDet[Knot[11, Alternating, 132]], KnotSignature[Knot[11, Alternating, 132]]}
Out[9]=   
{135, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 132]][q]
Out[10]=   
       -3   3    8              2       3       4       5      6      7    8
-13 + q   - -- + - + 18 q - 22 q  + 22 q  - 19 q  + 15 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 132]}
In[12]:=
A2Invariant[Knot[11, Alternating, 132]][q]
Out[12]=   
 -10    -6   4     -2      2      4    6      8    10      12      14      16
q    - q   + -- - q   + 3 q  - 6 q  + q  - 3 q  + q   + 4 q   - 2 q   + 5 q   - 
              4
             q
 
       18      20      22    24
>   2 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 132]][a, z]
Out[13]=   
                                 2      2      2                   4      4
     -6   4    4     2      2   z    4 z    4 z     2  2      4   z    2 z
1 - a   + -- - -- + a  - 2 z  - -- + ---- - ---- + a  z  - 2 z  - -- + ---- + 
           4    2                6     4      2                    6     4
          a    a                a     a      a                    a     a
 
     6    6
    z    z
>   -- + --
     4    2
    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 132]][a, z]
Out[14]=   
                                                       2      2       2
     -6   4    4     2   z    z    3 z   3 z      2   z    5 z    21 z
1 + a   + -- + -- - a  - -- - -- + --- + --- - 2 z  + -- - ---- - ----- - 
           4    2         7    5    3     a            8     6      4
          a    a         a    a    a                  a     a      a
 
        2              3      3      3      3      3                      4
    20 z       2  2   z    5 z    6 z    8 z    4 z         3      4   5 z
>   ----- + 3 a  z  - -- + ---- + ---- - ---- - ---- + 4 a z  + 5 z  - ---- + 
      2                9     7      5      3     a                       8
     a                a     a      a      a                             a
 
        4       4       4              5       5      5       5      5
    12 z    42 z    33 z       2  4   z    12 z    5 z    17 z    2 z
>   ----- + ----- + ----- - 3 a  z  + -- - ----- - ---- + ----- + ---- - 
      6       4       2                9     7       5      3      a
     a       a       a                a     a       a      a
 
                        6       6       6       6              7      7
         5       6   4 z    17 z    40 z    30 z     2  6   8 z    5 z
>   7 a z  - 10 z  + ---- - ----- - ----- - ----- + a  z  + ---- - ---- - 
                       8      6       4       2               7      5
                      a      a       a       a               a      a
 
        7      7                       8       8      8      9       9      9
    23 z    7 z         7      8   10 z    14 z    9 z    7 z    12 z    5 z
>   ----- - ---- + 3 a z  + 5 z  + ----- + ----- + ---- + ---- + ----- + ---- + 
      3      a                       6       4       2      5      3      a
     a                              a       a       a      a      a
 
       10      10
    2 z     2 z
>   ----- + -----
      4       2
     a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 132]], Vassiliev[3][Knot[11, Alternating, 132]]}
Out[15]=   
{-2, 0}
In[16]:=
Kh[Knot[11, Alternating, 132]][q, t]
Out[16]=   
          3     1       2       1       6      2      7    6 q       3
11 q + 8 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 12 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   10 q  t + 10 q  t  + 12 q  t  + 9 q  t  + 10 q  t  + 6 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a132
K11a131
K11a131
K11a133
K11a133