© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a130
K11a130
K11a132
K11a132
K11a131
Knotscape
This page is passe. Go here instead!

   The Knot K11a131

Visit K11a131's page at Knotilus!

Acknowledgement

K11a131 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X22,8,1,7 X18,9,19,10 X2,11,3,12 X20,13,21,14 X6,16,7,15 X8,17,9,18 X12,19,13,20 X16,21,17,22

Gauss Code: {1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -10, 7, -3, 8, -11, 9, -5, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 10 14 22 18 2 20 6 8 12 16

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 27t-1 - 31 + 27t - 16t2 + 6t3 - t4

Conway Polynomial: 1 + z2 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a252, K11a254, ...}

Determinant and Signature: {131, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 13q-5 - 18q-4 + 21q-3 - 21q-2 + 19q-1 - 14 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a218, ...}

A2 (sl(3)) Invariant: - q-24 - 2q-18 + 4q-16 - 2q-14 + 2q-12 + 2q-10 - 3q-8 + 4q-6 - 5q-4 + 3q-2 - q2 + 3q4 - 2q6 + q8

HOMFLY-PT Polynomial: 2 + 3z2 + 3z4 + z6 - 4a2 - 10a2z2 - 10a2z4 - 5a2z6 - a2z8 + 5a4 + 11a4z2 + 8a4z4 + 2a4z6 - 2a6 - 3a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 2a-2z4 + a-2z6 - a-1z + 5a-1z3 - 9a-1z5 + 4a-1z7 + 2 - 5z2 + 10z4 - 16z6 + 7z8 - 2az + 8az3 - 8az5 - 7az7 + 6az9 + 4a2 - 22a2z2 + 44a2z4 - 42a2z6 + 12a2z8 + 2a2z10 - 2a3z + 3a3z3 + 11a3z5 - 23a3z7 + 12a3z9 + 5a4 - 26a4z2 + 50a4z4 - 40a4z6 + 12a4z8 + 2a4z10 - 2a5z + 3a5z3 + 3a5z5 - 7a5z7 + 6a5z9 + 2a6 - 8a6z2 + 13a6z4 - 12a6z6 + 7a6z8 + a7z3 - 6a7z5 + 5a7z7 + 2a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11131. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        83  
j = -1       116   
j = -3      119    
j = -5     1010     
j = -7    811      
j = -9   510       
j = -11  28        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 131]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 131]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[22, 8, 1, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[20, 13, 21, 14], X[6, 16, 7, 15], 
 
>   X[8, 17, 9, 18], X[12, 19, 13, 20], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 131]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -10, 7, -3, 8, -11, 9, -5, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 131]]
Out[5]=   
DTCode[4, 10, 14, 22, 18, 2, 20, 6, 8, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 131]][t]
Out[6]=   
       -4   6    16   27              2      3    4
-31 - t   + -- - -- + -- + 27 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 131]][z]
Out[7]=   
     2      6    8
1 + z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 131], Knot[11, Alternating, 252], 
 
>   Knot[11, Alternating, 254]}
In[9]:=
{KnotDet[Knot[11, Alternating, 131]], KnotSignature[Knot[11, Alternating, 131]]}
Out[9]=   
{131, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 131]][q]
Out[10]=   
       -8   3    7    13   18   21   21   19            2    3
-14 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 131], Knot[11, Alternating, 218]}
In[12]:=
A2Invariant[Knot[11, Alternating, 131]][q]
Out[12]=   
  -24    2     4     2     2     2    3    4    5    3     2      4      6    8
-q    - --- + --- - --- + --- + --- - -- + -- - -- + -- - q  + 3 q  - 2 q  + q
         18    16    14    12    10    8    6    4    2
        q     q     q     q     q     q    q    q    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 131]][a, z]
Out[13]=   
       2      4      6      2       2  2       4  2      6  2      4
2 - 4 a  + 5 a  - 2 a  + 3 z  - 10 a  z  + 11 a  z  - 3 a  z  + 3 z  - 
 
        2  4      4  4    6  4    6      2  6      4  6    2  8
>   10 a  z  + 8 a  z  - a  z  + z  - 5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 131]][a, z]
Out[14]=   
                                                                      2
       2      4      6   z              3        5      9        2   z
2 + 4 a  + 5 a  + 2 a  - - - 2 a z - 2 a  z - 2 a  z + a  z - 5 z  + -- - 
                         a                                            2
                                                                     a
 
                                                 3
        2  2       4  2      6  2      8  2   5 z         3      3  3
>   22 a  z  - 26 a  z  - 8 a  z  + 2 a  z  + ---- + 8 a z  + 3 a  z  + 
                                               a
 
                                           4
       5  3    7  3      9  3       4   2 z        2  4       4  4       6  4
>   3 a  z  + a  z  - 2 a  z  + 10 z  - ---- + 44 a  z  + 50 a  z  + 13 a  z  - 
                                          2
                                         a
 
                 5
       8  4   9 z         5       3  5      5  5      7  5    9  5       6
>   5 a  z  - ---- - 8 a z  + 11 a  z  + 3 a  z  - 6 a  z  + a  z  - 16 z  + 
               a
 
     6                                                 7
    z        2  6       4  6       6  6      8  6   4 z         7       3  7
>   -- - 42 a  z  - 40 a  z  - 12 a  z  + 3 a  z  + ---- - 7 a z  - 23 a  z  - 
     2                                               a
    a
 
       5  7      7  7      8       2  8       4  8      6  8        9
>   7 a  z  + 5 a  z  + 7 z  + 12 a  z  + 12 a  z  + 7 a  z  + 6 a z  + 
 
        3  9      5  9      2  10      4  10
>   12 a  z  + 6 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 131]], Vassiliev[3][Knot[11, Alternating, 131]]}
Out[15]=   
{1, -3}
In[16]:=
Kh[Knot[11, Alternating, 131]][q, t]
Out[16]=   
9    11     1        2        1        5        2        8        5      10
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      8      11      10      10     11    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 8 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a131
K11a130
K11a130
K11a132
K11a132