© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a117
K11a117
K11a119
K11a119
K11a118
Knotscape
This page is passe. Go here instead!

   The Knot K11a118

Visit K11a118's page at Knotilus!

Acknowledgement

K11a118 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X18,7,19,8 X12,10,13,9 X2,11,3,12 X8,14,9,13 X20,16,21,15 X22,18,1,17 X6,19,7,20 X16,22,17,21

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -7, 5, -2, 6, -5, 7, -3, 8, -11, 9, -4, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 12 2 8 20 22 6 16

Alexander Polynomial: 2t-3 - 10t-2 + 20t-1 - 23 + 20t - 10t2 + 2t3

Conway Polynomial: 1 - 2z2 + 2z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a90, ...}

Determinant and Signature: {87, 2}

Jones Polynomial: q-3 - 2q-2 + 5q-1 - 8 + 11q - 14q2 + 14q3 - 12q4 + 10q5 - 6q6 + 3q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a45, ...}

A2 (sl(3)) Invariant: q-10 + q-8 + 2q-4 - q-2 - 1 + q2 - 4q4 + q6 - q8 + q10 + 3q12 - q14 + 3q16 - q18 - q20 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 3a-4 + 4a-4z2 + 3a-4z4 + a-4z6 - a-2 + 2a-2z4 + a-2z6 - 2 - 5z2 - 2z4 + 2a2 + a2z2

Kauffman Polynomial: - 2a-9z3 + a-9z5 + a-8z2 - 6a-8z4 + 3a-8z6 - a-7z + 6a-7z3 - 11a-7z5 + 5a-7z7 + a-6 - 10a-6z2 + 21a-6z4 - 17a-6z6 + 6a-6z8 + a-5z - 2a-5z3 + 10a-5z5 - 9a-5z7 + 4a-5z9 + 3a-4 - 24a-4z2 + 43a-4z4 - 26a-4z6 + 6a-4z8 + a-4z10 + 7a-3z - 23a-3z3 + 31a-3z5 - 19a-3z7 + 6a-3z9 + a-2 - 10a-2z2 + 13a-2z4 - 9a-2z6 + 2a-2z8 + a-2z10 + 5a-1z - 9a-1z3 + 3a-1z5 - 3a-1z7 + 2a-1z9 - 2 + 8z2 - 7z4 - 2z6 + 2z8 + 4az3 - 6az5 + 2az7 - 2a2 + 5a2z2 - 4a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          2 
j = 13         41 
j = 11        62  
j = 9       64   
j = 7      86    
j = 5     66     
j = 3    58      
j = 1   47       
j = -1  14        
j = -3 14         
j = -5 1          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 118]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 118]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[18, 7, 19, 8], 
 
>   X[12, 10, 13, 9], X[2, 11, 3, 12], X[8, 14, 9, 13], X[20, 16, 21, 15], 
 
>   X[22, 18, 1, 17], X[6, 19, 7, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 118]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -7, 5, -2, 6, -5, 7, -3, 8, -11, 9, -4, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 118]]
Out[5]=   
DTCode[4, 10, 14, 18, 12, 2, 8, 20, 22, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 118]][t]
Out[6]=   
      2    10   20              2      3
-23 + -- - -- + -- + 20 t - 10 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 118]][z]
Out[7]=   
       2      4      6
1 - 2 z  + 2 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 90], Knot[11, Alternating, 118]}
In[9]:=
{KnotDet[Knot[11, Alternating, 118]], KnotSignature[Knot[11, Alternating, 118]]}
Out[9]=   
{87, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 118]][q]
Out[10]=   
      -3   2    5              2       3       4       5      6      7    8
-8 + q   - -- + - + 11 q - 14 q  + 14 q  - 12 q  + 10 q  - 6 q  + 3 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 45], Knot[11, Alternating, 118]}
In[12]:=
A2Invariant[Knot[11, Alternating, 118]][q]
Out[12]=   
      -10    -8   2     -2    2      4    6    8    10      12    14      16
-1 + q    + q   + -- - q   + q  - 4 q  + q  - q  + q   + 3 q   - q   + 3 q   - 
                   4
                  q
 
     18    20    22    24
>   q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 118]][a, z]
Out[13]=   
                                       2      2                   4      4
      -6   3     -2      2      2   2 z    4 z     2  2      4   z    3 z
-2 - a   + -- - a   + 2 a  - 5 z  - ---- + ---- + a  z  - 2 z  - -- + ---- + 
            4                         6      4                    6     4
           a                         a      a                    a     a
 
       4    6    6
    2 z    z    z
>   ---- + -- + --
      2     4    2
     a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 118]][a, z]
Out[14]=   
                                                           2       2       2
      -6   3     -2      2   z    z    7 z   5 z      2   z    10 z    24 z
-2 + a   + -- + a   - 2 a  - -- + -- + --- + --- + 8 z  + -- - ----- - ----- - 
            4                 7    5    3     a            8     6       4
           a                 a    a    a                  a     a       a
 
        2                3      3      3       3      3
    10 z       2  2   2 z    6 z    2 z    23 z    9 z         3      4
>   ----- + 5 a  z  - ---- + ---- - ---- - ----- - ---- + 4 a z  - 7 z  - 
      2                 9      7      5      3      a
     a                 a      a      a      a
 
       4       4       4       4              5       5       5       5
    6 z    21 z    43 z    13 z       2  4   z    11 z    10 z    31 z
>   ---- + ----- + ----- + ----- - 4 a  z  + -- - ----- + ----- + ----- + 
      8      6       4       2                9     7       5       3
     a      a       a       a                a     a       a       a
 
       5                      6       6       6      6              7      7
    3 z         5      6   3 z    17 z    26 z    9 z     2  6   5 z    9 z
>   ---- - 6 a z  - 2 z  + ---- - ----- - ----- - ---- + a  z  + ---- - ---- - 
     a                       8      6       4       2              7      5
                            a      a       a       a              a      a
 
        7      7                      8      8      8      9      9      9
    19 z    3 z         7      8   6 z    6 z    2 z    4 z    6 z    2 z
>   ----- - ---- + 2 a z  + 2 z  + ---- + ---- + ---- + ---- + ---- + ---- + 
      3      a                       6      4      2      5      3     a
     a                              a      a      a      a      a
 
     10    10
    z     z
>   --- + ---
     4     2
    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 118]], Vassiliev[3][Knot[11, Alternating, 118]]}
Out[15]=   
{-2, 1}
In[16]:=
Kh[Knot[11, Alternating, 118]][q, t]
Out[16]=   
         3     1       1       1       4      1      4    4 q      3
7 q + 5 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 8 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   6 q  t + 6 q  t  + 8 q  t  + 6 q  t  + 6 q  t  + 4 q  t  + 6 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a118
K11a117
K11a117
K11a119
K11a119