© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a116
K11a116
K11a118
K11a118
K11a117
Knotscape
This page is passe. Go here instead!

   The Knot K11a117

Visit K11a117's page at Knotilus!

Acknowledgement

K11a117 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X18,8,19,7 X2,10,3,9 X22,11,1,12 X8,14,9,13 X20,16,21,15 X6,18,7,17 X16,20,17,19 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -11, 7, -3, 8, -10, 9, -4, 10, -8, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 2 22 8 20 6 16 12

Alexander Polynomial: - 2t-3 + 12t-2 - 27t-1 + 35 - 27t + 12t2 - 2t3

Conway Polynomial: 1 + 3z2 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a152, ...}

Determinant and Signature: {117, 4}

Jones Polynomial: 1 - 3q + 7q2 - 11q3 + 16q4 - 18q5 + 19q6 - 17q7 + 12q8 - 8q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 - q2 + q4 + 2q6 - 3q8 + 4q10 - q12 + 3q16 - 2q18 + 3q20 - 3q22 - q24 + q26 - 3q28 + 2q30 + q32 - q34

HOMFLY-PT Polynomial: - a-10z2 - a-8 + 2a-8z2 + 2a-8z4 + a-6 + a-6z2 - a-6z4 - a-6z6 - a-4z2 - 2a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4

Kauffman Polynomial: - a-13z3 + a-13z5 + a-12z2 - 6a-12z4 + 4a-12z6 - a-11z + 6a-11z3 - 12a-11z5 + 7a-11z7 - a-10z2 + 3a-10z4 - 9a-10z6 + 7a-10z8 - a-9z + 14a-9z3 - 18a-9z5 + 4a-9z7 + 4a-9z9 - a-8 - 3a-8z2 + 20a-8z4 - 27a-8z6 + 12a-8z8 + a-8z10 - 3a-7z + 13a-7z3 - 11a-7z5 - 5a-7z7 + 7a-7z9 - a-6 - 2a-6z2 + 14a-6z4 - 22a-6z6 + 9a-6z8 + a-6z10 - 4a-5z + 12a-5z3 - 14a-5z5 + a-5z7 + 3a-5z9 + 2a-4z2 - 7a-4z6 + 4a-4z8 - a-3z + 6a-3z3 - 8a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11117. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          3 
j = 19         51 
j = 17        73  
j = 15       105   
j = 13      97    
j = 11     910     
j = 9    79      
j = 7   49       
j = 5  37        
j = 3 15         
j = 1 2          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 117]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 117]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[18, 8, 19, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[8, 14, 9, 13], X[20, 16, 21, 15], 
 
>   X[6, 18, 7, 17], X[16, 20, 17, 19], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 117]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -11, 7, -3, 8, -10, 9, -4, 10, 
 
>   -8, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 117]]
Out[5]=   
DTCode[4, 10, 14, 18, 2, 22, 8, 20, 6, 16, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 117]][t]
Out[6]=   
     2    12   27              2      3
35 - -- + -- - -- - 27 t + 12 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 117]][z]
Out[7]=   
       2      6
1 + 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 117], Knot[11, Alternating, 152]}
In[9]:=
{KnotDet[Knot[11, Alternating, 117]], KnotSignature[Knot[11, Alternating, 117]]}
Out[9]=   
{117, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 117]][q]
Out[10]=   
             2       3       4       5       6       7       8      9      10
1 - 3 q + 7 q  - 11 q  + 16 q  - 18 q  + 19 q  - 17 q  + 12 q  - 8 q  + 4 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 117]}
In[12]:=
A2Invariant[Knot[11, Alternating, 117]][q]
Out[12]=   
     2    4      6      8      10    12      16      18      20      22    24
1 - q  + q  + 2 q  - 3 q  + 4 q   - q   + 3 q   - 2 q   + 3 q   - 3 q   - q   + 
 
     26      28      30    32    34
>   q   - 3 q   + 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 117]][a, z]
Out[13]=   
                    2       2    2    2      2      4    4      4    4    6    6
  -8    -6    -2   z     2 z    z    z    2 z    2 z    z    2 z    z    z    z
-a   + a   + a   - --- + ---- + -- - -- + ---- + ---- - -- - ---- + -- - -- - --
                    10     8     6    4     2      8     6     4     2    6    4
                   a      a     a    a     a      a     a     a     a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 117]][a, z]
Out[14]=   
                                                2     2       2      2      2
  -8    -6    -2    z    z    3 z   4 z   z    z     z     3 z    2 z    2 z
-a   - a   - a   - --- - -- - --- - --- - -- + --- - --- - ---- - ---- + ---- + 
                    11    9    7     5     3    12    10     8      6      4
                   a     a    a     a     a    a     a      a      a      a
 
       2    3       3       3       3       3      3      4      4       4
    3 z    z     6 z    14 z    13 z    12 z    6 z    6 z    3 z    20 z
>   ---- - --- + ---- + ----- + ----- + ----- + ---- - ---- + ---- + ----- + 
      2     13    11      9       7       5       3     12     10      8
     a     a     a       a       a       a       a     a      a       a
 
        4      4    5        5       5       5       5      5      6      6
    14 z    3 z    z     12 z    18 z    11 z    14 z    8 z    4 z    9 z
>   ----- - ---- + --- - ----- - ----- - ----- - ----- - ---- + ---- - ---- - 
      6       2     13     11      9       7       5       3     12     10
     a       a     a      a       a       a       a       a     a      a
 
        6       6      6    6      7      7      7    7      7      8       8
    27 z    22 z    7 z    z    7 z    4 z    5 z    z    3 z    7 z    12 z
>   ----- - ----- - ---- + -- + ---- + ---- - ---- + -- + ---- + ---- + ----- + 
      8       6       4     2    11      9      7     5     3     10      8
     a       a       a     a    a       a      a     a     a     a       a
 
       8      8      9      9      9    10    10
    9 z    4 z    4 z    7 z    3 z    z     z
>   ---- + ---- + ---- + ---- + ---- + --- + ---
      6      4      9      7      5     8     6
     a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 117]], Vassiliev[3][Knot[11, Alternating, 117]]}
Out[15]=   
{3, 6}
In[16]:=
Kh[Knot[11, Alternating, 117]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7        7  2      9  2      9  3
5 q  + 3 q  + ---- + --- + -- + 7 q  t + 4 q  t + 9 q  t  + 7 q  t  + 9 q  t  + 
                 2    t    t
              q t
 
       11  3       11  4      13  4      13  5       15  5      15  6
>   9 q   t  + 10 q   t  + 9 q   t  + 7 q   t  + 10 q   t  + 5 q   t  + 
 
       17  6      17  7      19  7    19  8      21  8    23  9
>   7 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a117
K11a116
K11a116
K11a118
K11a118