© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a114
K11a114
K11a116
K11a116
K11a115
Knotscape
This page is passe. Go here instead!

   The Knot K11a115

Visit K11a115's page at Knotilus!

Acknowledgement

K11a115 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X18,7,19,8 X2,10,3,9 X20,11,21,12 X6,14,7,13 X22,16,1,15 X12,17,13,18 X8,19,9,20 X16,22,17,21

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -4, 10, -6, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 2 20 6 22 12 8 16

Alexander Polynomial: - 3t-3 + 13t-2 - 27t-1 + 35 - 27t + 13t2 - 3t3

Conway Polynomial: 1 - 2z2 - 5z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {121, 0}

Jones Polynomial: q-4 - 3q-3 + 7q-2 - 12q-1 + 17 - 19q + 19q2 - 17q3 + 13q4 - 8q5 + 4q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-12 - q-10 + q-8 + 2q-6 - 3q-4 + 4q-2 - 1 - q2 + q4 - 4q6 + 3q8 - 2q10 + q12 + 3q14 - 2q16 + 2q18 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 4a-4 + 7a-4z2 + 3a-4z4 - 4a-2 - 9a-2z2 - 7a-2z4 - 2a-2z6 + 1 - z2 - 2z4 - z6 + a2 + 2a2z2 + a2z4

Kauffman Polynomial: - a-7z + 3a-7z3 - 3a-7z5 + a-7z7 + a-6 - 5a-6z2 + 15a-6z4 - 14a-6z6 + 4a-6z8 - 3a-5z + 8a-5z3 + 3a-5z5 - 13a-5z7 + 5a-5z9 + 4a-4 - 23a-4z2 + 51a-4z4 - 44a-4z6 + 8a-4z8 + 2a-4z10 - 3a-3z + 6a-3z3 + 10a-3z5 - 29a-3z7 + 12a-3z9 + 4a-2 - 25a-2z2 + 54a-2z4 - 53a-2z6 + 14a-2z8 + 2a-2z10 - 3a-1z + 13a-1z3 - 12a-1z5 - 6a-1z7 + 7a-1z9 + 1 - 2z2 + 11z4 - 17z6 + 10z8 - 2az + 10az3 - 13az5 + 9az7 - a2 + 4a2z2 - 6a2z4 + 6a2z6 - 2a3z3 + 3a3z5 - a4z2 + a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15           1
j = 13          3 
j = 11         51 
j = 9        83  
j = 7       95   
j = 5      108    
j = 3     99     
j = 1    810      
j = -1   510       
j = -3  27        
j = -5 15         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 115]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 115]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[18, 7, 19, 8], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[6, 14, 7, 13], X[22, 16, 1, 15], 
 
>   X[12, 17, 13, 18], X[8, 19, 9, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 115]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -4, 10, 
 
>   -6, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 115]]
Out[5]=   
DTCode[4, 10, 14, 18, 2, 20, 6, 22, 12, 8, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 115]][t]
Out[6]=   
     3    13   27              2      3
35 - -- + -- - -- - 27 t + 13 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 115]][z]
Out[7]=   
       2      4      6
1 - 2 z  - 5 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 115]}
In[9]:=
{KnotDet[Knot[11, Alternating, 115]], KnotSignature[Knot[11, Alternating, 115]]}
Out[9]=   
{121, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 115]][q]
Out[10]=   
      -4   3    7    12              2       3       4      5      6    7
17 + q   - -- + -- - -- - 19 q + 19 q  - 17 q  + 13 q  - 8 q  + 4 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 115]}
In[12]:=
A2Invariant[Knot[11, Alternating, 115]][q]
Out[12]=   
      -12    -10    -8   2    3    4     2    4      6      8      10    12
-1 + q    - q    + q   + -- - -- + -- - q  + q  - 4 q  + 3 q  - 2 q   + q   + 
                          6    4    2
                         q    q    q
 
       14      16      18    22
>   3 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 115]][a, z]
Out[13]=   
                               2      2      2                       4      4
     -6   4    4     2    2   z    7 z    9 z       2  2      4   3 z    7 z
1 - a   + -- - -- + a  - z  - -- + ---- - ---- + 2 a  z  - 2 z  + ---- - ---- + 
           4    2              6     4      2                       4      2
          a    a              a     a      a                       a      a
 
                    6
     2  4    6   2 z
>   a  z  - z  - ----
                   2
                  a
In[14]:=
Kauffman[Knot[11, Alternating, 115]][a, z]
Out[14]=   
                                                                  2       2
     -6   4    4     2   z    3 z   3 z   3 z              2   5 z    23 z
1 + a   + -- + -- - a  - -- - --- - --- - --- - 2 a z - 2 z  - ---- - ----- - 
           4    2         7    5     3     a                     6      4
          a    a         a    a     a                           a      a
 
        2                        3      3      3       3
    25 z       2  2    4  2   3 z    8 z    6 z    13 z          3      3  3
>   ----- + 4 a  z  - a  z  + ---- + ---- + ---- + ----- + 10 a z  - 2 a  z  + 
      2                         7      5      3      a
     a                         a      a      a
 
                4       4       4                        5      5       5
        4   15 z    51 z    54 z       2  4    4  4   3 z    3 z    10 z
>   11 z  + ----- + ----- + ----- - 6 a  z  + a  z  - ---- + ---- + ----- - 
              6       4       2                         7      5      3
             a       a       a                         a      a      a
 
        5                                   6       6       6              7
    12 z          5      3  5       6   14 z    44 z    53 z       2  6   z
>   ----- - 13 a z  + 3 a  z  - 17 z  - ----- - ----- - ----- + 6 a  z  + -- - 
      a                                   6       4       2                7
                                         a       a       a                a
 
        7       7      7                       8      8       8      9
    13 z    29 z    6 z         7       8   4 z    8 z    14 z    5 z
>   ----- - ----- - ---- + 9 a z  + 10 z  + ---- + ---- + ----- + ---- + 
      5       3      a                        6      4      2       5
     a       a                               a      a      a       a
 
        9      9      10      10
    12 z    7 z    2 z     2 z
>   ----- + ---- + ----- + -----
      3      a       4       2
     a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 115]], Vassiliev[3][Knot[11, Alternating, 115]]}
Out[15]=   
{-2, 0}
In[16]:=
Kh[Knot[11, Alternating, 115]][q, t]
Out[16]=   
10           1       2       1       5       2      7      5
-- + 8 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 10 q t + 
q           9  4    7  3    5  3    5  2    3  2    3     q t
           q  t    q  t    q  t    q  t    q  t    q  t
 
       3        3  2       5  2      5  3      7  3      7  4      9  4
>   9 q  t + 9 q  t  + 10 q  t  + 8 q  t  + 9 q  t  + 5 q  t  + 8 q  t  + 
 
       9  5      11  5    11  6      13  6    15  7
>   3 q  t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a115
K11a114
K11a114
K11a116
K11a116