© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a113
K11a113
K11a115
K11a115
K11a114
Knotscape
This page is passe. Go here instead!

   The Knot K11a114

Visit K11a114's page at Knotilus!

Acknowledgement

K11a114 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X18,7,19,8 X2,10,3,9 X16,12,17,11 X6,14,7,13 X22,16,1,15 X20,17,21,18 X8,19,9,20 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -10, 5, -2, 6, -11, 7, -3, 8, -6, 9, -4, 10, -9, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 2 16 6 22 20 8 12

Alexander Polynomial: 3t-3 - 15t-2 + 35t-1 - 45 + 35t - 15t2 + 3t3

Conway Polynomial: 1 + 2z2 + 3z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {151, 2}

Jones Polynomial: - q-2 + 4q-1 - 9 + 16q - 21q2 + 25q3 - 24q4 + 21q5 - 16q6 + 9q7 - 4q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-6 + 2q-4 - q-2 - 2 + 5q2 - 4q4 + 3q6 + 2q8 - q10 + 5q12 - 4q14 + 3q16 - 2q18 - 4q20 + 3q22 - 2q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 4a-6 - 6a-6z2 - 3a-6z4 + 4a-4 + 8a-4z2 + 6a-4z4 + 2a-4z6 + a-2z4 + a-2z6 - z2 - z4

Kauffman Polynomial: a-10z2 - 2a-10z4 + a-10z6 - 2a-9z + 7a-9z3 - 9a-9z5 + 4a-9z7 + a-8 - 2a-8z2 + 8a-8z4 - 14a-8z6 + 7a-8z8 - 7a-7z + 20a-7z3 - 19a-7z5 - 2a-7z7 + 6a-7z9 + 4a-6 - 15a-6z2 + 35a-6z4 - 44a-6z6 + 16a-6z8 + 2a-6z10 - 7a-5z + 22a-5z3 - 18a-5z5 - 12a-5z7 + 13a-5z9 + 4a-4 - 16a-4z2 + 37a-4z4 - 46a-4z6 + 19a-4z8 + 2a-4z10 - 3a-3z + 16a-3z3 - 20a-3z5 + 2a-3z7 + 7a-3z9 - 2a-2z2 + 7a-2z4 - 13a-2z6 + 10a-2z8 - a-1z + 6a-1z3 - 11a-1z5 + 8a-1z7 + 2z2 - 5z4 + 4z6 - az3 + az5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19           1
j = 17          3 
j = 15         61 
j = 13        103  
j = 11       116   
j = 9      1310    
j = 7     1211     
j = 5    913      
j = 3   712       
j = 1  310        
j = -1 16         
j = -3 3          
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 114]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 114]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[18, 7, 19, 8], 
 
>   X[2, 10, 3, 9], X[16, 12, 17, 11], X[6, 14, 7, 13], X[22, 16, 1, 15], 
 
>   X[20, 17, 21, 18], X[8, 19, 9, 20], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 114]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -10, 5, -2, 6, -11, 7, -3, 8, -6, 9, -4, 10, 
 
>   -9, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 114]]
Out[5]=   
DTCode[4, 10, 14, 18, 2, 16, 6, 22, 20, 8, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 114]][t]
Out[6]=   
      3    15   35              2      3
-45 + -- - -- + -- + 35 t - 15 t  + 3 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 114]][z]
Out[7]=   
       2      4      6
1 + 2 z  + 3 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 114]}
In[9]:=
{KnotDet[Knot[11, Alternating, 114]], KnotSignature[Knot[11, Alternating, 114]]}
Out[9]=   
{151, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 114]][q]
Out[10]=   
      -2   4              2       3       4       5       6      7      8    9
-9 - q   + - + 16 q - 21 q  + 25 q  - 24 q  + 21 q  - 16 q  + 9 q  - 4 q  + q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 114]}
In[12]:=
A2Invariant[Knot[11, Alternating, 114]][q]
Out[12]=   
      -6   2     -2      2      4      6      8    10      12      14      16
-2 - q   + -- - q   + 5 q  - 4 q  + 3 q  + 2 q  - q   + 5 q   - 4 q   + 3 q   - 
            4
           q
 
       18      20      22      24    28
>   2 q   - 4 q   + 3 q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 114]][a, z]
Out[13]=   
                      2      2      2           4      4    4      6    6
 -8   4    4     2   z    6 z    8 z     4   3 z    6 z    z    2 z    z
a   - -- + -- - z  + -- - ---- + ---- - z  - ---- + ---- + -- + ---- + --
       6    4         8     6      4           6      4     2     4     2
      a    a         a     a      a           a      a     a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 114]][a, z]
Out[14]=   
                                                    2       2       2       2
 -8   4    4    2 z   7 z   7 z   3 z   z      2   z     2 z    15 z    16 z
a   + -- + -- - --- - --- - --- - --- - - + 2 z  + --- - ---- - ----- - ----- - 
       6    4    9     7     5     3    a           10     8      6       4
      a    a    a     a     a     a                a      a      a       a
 
       2      3       3       3       3      3                    4      4
    2 z    7 z    20 z    22 z    16 z    6 z       3      4   2 z    8 z
>   ---- + ---- + ----- + ----- + ----- + ---- - a z  - 5 z  - ---- + ---- + 
      2      9      7       5       3      a                    10      8
     a      a      a       a       a                           a       a
 
        4       4      4      5       5       5       5       5
    35 z    37 z    7 z    9 z    19 z    18 z    20 z    11 z       5      6
>   ----- + ----- + ---- - ---- - ----- - ----- - ----- - ----- + a z  + 4 z  + 
      6       4       2      9      7       5       3       a
     a       a       a      a      a       a       a
 
     6        6       6       6       6      7      7       7      7      7
    z     14 z    44 z    46 z    13 z    4 z    2 z    12 z    2 z    8 z
>   --- - ----- - ----- - ----- - ----- + ---- - ---- - ----- + ---- + ---- + 
     10     8       6       4       2       9      7      5       3     a
    a      a       a       a       a       a      a      a       a
 
       8       8       8       8      9       9      9      10      10
    7 z    16 z    19 z    10 z    6 z    13 z    7 z    2 z     2 z
>   ---- + ----- + ----- + ----- + ---- + ----- + ---- + ----- + -----
      8      6       4       2       7      5       3      6       4
     a      a       a       a       a      a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 114]], Vassiliev[3][Knot[11, Alternating, 114]]}
Out[15]=   
{2, 2}
In[16]:=
Kh[Knot[11, Alternating, 114]][q, t]
Out[16]=   
          3     1       3      1      6    3 q       3        5         5  2
10 q + 7 q  + ----- + ----- + ---- + --- + --- + 12 q  t + 9 q  t + 13 q  t  + 
               5  3    3  2      2   q t    t
              q  t    q  t    q t
 
        7  2       7  3       9  3       9  4       11  4      11  5
>   12 q  t  + 11 q  t  + 13 q  t  + 10 q  t  + 11 q   t  + 6 q   t  + 
 
        13  5      13  6      15  6    15  7      17  7    19  8
>   10 q   t  + 3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a114
K11a113
K11a113
K11a115
K11a115