© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a107
K11a107
K11a109
K11a109
K11a108
Knotscape
This page is passe. Go here instead!

   The Knot K11a108

Visit K11a108's page at Knotilus!

Acknowledgement

K11a108 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X18,15,19,16 X6,18,7,17 X8,19,9,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 20 22 18 6 8 12

Alexander Polynomial: - t-4 + 5t-3 - 12t-2 + 20t-1 - 23 + 20t - 12t2 + 5t3 - t4

Conway Polynomial: 1 + z2 - 2z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a57, K11a139, K11a231, ...}

Determinant and Signature: {99, -2}

Jones Polynomial: q-7 - 3q-6 + 6q-5 - 11q-4 + 14q-3 - 15q-2 + 16q-1 - 13 + 10q - 6q2 + 3q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 - q-18 + 2q-16 - 2q-14 - 2q-12 + q-10 - 3q-8 + 4q-6 - q-4 + 2q-2 + 2 - q2 + 3q4 - q6 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 6 + 13z2 + 9z4 + 2z6 - 4a2 - 14a2z2 - 14a2z4 - 6a2z6 - a2z8 + a4 + 5a4z2 + 4a4z4 + a4z6

Kauffman Polynomial: - 2a-3z + 5a-3z3 - 4a-3z5 + a-3z7 + 2a-2 - 7a-2z2 + 15a-2z4 - 12a-2z6 + 3a-2z8 - 5a-1z + 12a-1z3 - 3a-1z5 - 7a-1z7 + 3a-1z9 + 6 - 23z2 + 42z4 - 34z6 + 7z8 + z10 - 6az + 14az3 - 4az5 - 14az7 + 7az9 + 4a2 - 23a2z2 + 41a2z4 - 38a2z6 + 11a2z8 + a2z10 - 3a3z + 15a3z3 - 17a3z5 + a3z7 + 4a3z9 + a4 - 5a4z2 + 9a4z4 - 11a4z6 + 7a4z8 + a5z + 5a5z3 - 9a5z5 + 7a5z7 + a6z2 - 4a6z4 + 5a6z6 + a7z - 3a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11108. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          2 
j = 5         41 
j = 3        62  
j = 1       74   
j = -1      96    
j = -3     78     
j = -5    78      
j = -7   47       
j = -9  27        
j = -11 14         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 108]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 108]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 5, 15, 6], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[22, 13, 1, 14], X[18, 15, 19, 16], 
 
>   X[6, 18, 7, 17], X[8, 19, 9, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 108]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 108]]
Out[5]=   
DTCode[4, 10, 14, 16, 2, 20, 22, 18, 6, 8, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 108]][t]
Out[6]=   
       -4   5    12   20              2      3    4
-23 - t   + -- - -- + -- + 20 t - 12 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 108]][z]
Out[7]=   
     2      4      6    8
1 + z  - 2 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 57], Knot[11, Alternating, 108], 
 
>   Knot[11, Alternating, 139], Knot[11, Alternating, 231]}
In[9]:=
{KnotDet[Knot[11, Alternating, 108]], KnotSignature[Knot[11, Alternating, 108]]}
Out[9]=   
{99, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 108]][q]
Out[10]=   
       -7   3    6    11   14   15   16             2      3    4
-13 + q   - -- + -- - -- + -- - -- + -- + 10 q - 6 q  + 3 q  - q
             6    5    4    3    2   q
            q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 108]}
In[12]:=
A2Invariant[Knot[11, Alternating, 108]][q]
Out[12]=   
     -20    -18    2     2     2     -10   3    4     -4   2     2      4
2 + q    - q    + --- - --- - --- + q    - -- + -- - q   + -- - q  + 3 q  - 
                   16    14    12           8    6          2
                  q     q     q            q    q          q
 
     6    12
>   q  - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 108]][a, z]
Out[13]=   
                                2                                4
    2       2    4       2   3 z        2  2      4  2      4   z        2  4
6 - -- - 4 a  + a  + 13 z  - ---- - 14 a  z  + 5 a  z  + 9 z  - -- - 14 a  z  + 
     2                         2                                 2
    a                         a                                 a
 
       4  4      6      2  6    4  6    2  8
>   4 a  z  + 2 z  - 6 a  z  + a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 108]][a, z]
Out[14]=   
                                                                           2
    2       2    4   2 z   5 z              3      5      7         2   7 z
6 + -- + 4 a  + a  - --- - --- - 6 a z - 3 a  z + a  z + a  z - 23 z  - ---- - 
     2                3     a                                             2
    a                a                                                   a
 
                                            3       3
        2  2      4  2    6  2    8  2   5 z    12 z          3       3  3
>   23 a  z  - 5 a  z  + a  z  - a  z  + ---- + ----- + 14 a z  + 15 a  z  + 
                                           3      a
                                          a
 
                                    4
       5  3      7  3       4   15 z        2  4      4  4      6  4    8  4
>   5 a  z  - 3 a  z  + 42 z  + ----- + 41 a  z  + 9 a  z  - 4 a  z  + a  z  - 
                                  2
                                 a
 
       5      5                                                       6
    4 z    3 z         5       3  5      5  5      7  5       6   12 z
>   ---- - ---- - 4 a z  - 17 a  z  - 9 a  z  + 3 a  z  - 34 z  - ----- - 
      3     a                                                       2
     a                                                             a
 
                                     7      7
        2  6       4  6      6  6   z    7 z          7    3  7      5  7
>   38 a  z  - 11 a  z  + 5 a  z  + -- - ---- - 14 a z  + a  z  + 7 a  z  + 
                                     3    a
                                    a
 
              8                           9
       8   3 z        2  8      4  8   3 z         9      3  9    10    2  10
>   7 z  + ---- + 11 a  z  + 7 a  z  + ---- + 7 a z  + 4 a  z  + z   + a  z
             2                          a
            a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 108]], Vassiliev[3][Knot[11, Alternating, 108]]}
Out[15]=   
{1, 1}
In[16]:=
Kh[Knot[11, Alternating, 108]][q, t]
Out[16]=   
8    9     1        2        1        4        2       7       4       7
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      8      7     6 t                2      3  2      3  3      5  3
>   ----- + ---- + ---- + --- + 7 q t + 4 q t  + 6 q  t  + 2 q  t  + 4 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     5  4      7  4    9  5
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a108
K11a107
K11a107
K11a109
K11a109