© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a106
K11a106
K11a108
K11a108
K11a107
Knotscape
This page is passe. Go here instead!

   The Knot K11a107

Visit K11a107's page at Knotilus!

Acknowledgement

K11a107 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,5,15,6 X16,7,17,8 X2,10,3,9 X20,12,21,11 X18,13,19,14 X8,15,9,16 X6,17,7,18 X22,20,1,19 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -3, 8, -4, 9, -7, 10, -6, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 20 18 8 6 22 12

Alexander Polynomial: 2t-3 - 11t-2 + 26t-1 - 33 + 26t - 11t2 + 2t3

Conway Polynomial: 1 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10113, K11a347, ...}

Determinant and Signature: {111, 2}

Jones Polynomial: - q-4 + 3q-3 - 6q-2 + 11q-1 - 14 + 17q - 18q2 + 16q3 - 12q4 + 8q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-10 - q-8 - q-6 + 4q-4 - q-2 + 3 + 2q2 - 3q4 + q6 - 4q8 + 2q10 + q12 - q14 + 3q16 - 2q18 - q20 + q22

HOMFLY-PT Polynomial: a-6z2 + a-4 - 2a-4z2 - 2a-4z4 - 3a-2 - 2a-2z2 + a-2z4 + a-2z6 + 4 + 5z2 + 3z4 + z6 - a2 - 2a2z2 - a2z4

Kauffman Polynomial: a-8z4 - 2a-7z3 + 4a-7z5 + 3a-6z2 - 8a-6z4 + 8a-6z6 - 2a-5z + 6a-5z3 - 12a-5z5 + 10a-5z7 + a-4 + 3a-4z2 - 9a-4z4 - 4a-4z6 + 8a-4z8 - 6a-3z + 26a-3z3 - 35a-3z5 + 9a-3z7 + 4a-3z9 + 3a-2 - 10a-2z2 + 24a-2z4 - 35a-2z6 + 13a-2z8 + a-2z10 - 8a-1z + 29a-1z3 - 21a-1z5 - 8a-1z7 + 7a-1z9 + 4 - 18z2 + 40z4 - 35z6 + 8z8 + z10 - 6az + 16az3 - 6az5 - 6az7 + 3az9 + a2 - 8a2z2 + 16a2z4 - 12a2z6 + 3a2z8 - 2a3z + 5a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         51 
j = 9        73  
j = 7       95   
j = 5      97    
j = 3     89     
j = 1    710      
j = -1   47       
j = -3  27        
j = -5 14         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 107]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 107]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 5, 15, 6], X[16, 7, 17, 8], 
 
>   X[2, 10, 3, 9], X[20, 12, 21, 11], X[18, 13, 19, 14], X[8, 15, 9, 16], 
 
>   X[6, 17, 7, 18], X[22, 20, 1, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 107]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -3, 8, -4, 9, -7, 10, 
 
>   -6, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 107]]
Out[5]=   
DTCode[4, 10, 14, 16, 2, 20, 18, 8, 6, 22, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 107]][t]
Out[6]=   
      2    11   26              2      3
-33 + -- - -- + -- + 26 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 107]][z]
Out[7]=   
     4      6
1 + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 113], Knot[11, Alternating, 107], Knot[11, Alternating, 347]}
In[9]:=
{KnotDet[Knot[11, Alternating, 107]], KnotSignature[Knot[11, Alternating, 107]]}
Out[9]=   
{111, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 107]][q]
Out[10]=   
       -4   3    6    11              2       3       4      5      6    7
-14 - q   + -- - -- + -- + 17 q - 18 q  + 16 q  - 12 q  + 8 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 107]}
In[12]:=
A2Invariant[Knot[11, Alternating, 107]][q]
Out[12]=   
     -12    -10    -8    -6   4     -2      2      4    6      8      10
3 - q    + q    - q   - q   + -- - q   + 2 q  - 3 q  + q  - 4 q  + 2 q   + 
                               4
                              q
 
     12    14      16      18    20    22
>   q   - q   + 3 q   - 2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 107]][a, z]
Out[13]=   
                            2      2      2                       4    4
     -4   3     2      2   z    2 z    2 z       2  2      4   2 z    z
4 + a   - -- - a  + 5 z  + -- - ---- - ---- - 2 a  z  + 3 z  - ---- + -- - 
           2                6     4      2                       4     2
          a                a     a      a                       a     a
 
                  6
     2  4    6   z
>   a  z  + z  + --
                  2
                 a
In[14]:=
Kauffman[Knot[11, Alternating, 107]][a, z]
Out[14]=   
                                                                  2      2
     -4   3     2   2 z   6 z   8 z              3         2   3 z    3 z
4 + a   + -- + a  - --- - --- - --- - 6 a z - 2 a  z - 18 z  + ---- + ---- - 
           2         5     3     a                               6      4
          a         a     a                                     a      a
 
        2                3      3       3       3
    10 z       2  2   2 z    6 z    26 z    29 z          3      3  3       4
>   ----- - 8 a  z  - ---- + ---- + ----- + ----- + 16 a z  + 5 a  z  + 40 z  + 
      2                 7      5      3       a
     a                 a      a      a
 
     4      4      4       4                 5       5       5       5
    z    8 z    9 z    24 z        2  4   4 z    12 z    35 z    21 z
>   -- - ---- - ---- + ----- + 16 a  z  + ---- - ----- - ----- - ----- - 
     8     6      4      2                  7      5       3       a
    a     a      a      a                  a      a       a
 
                                  6      6       6                  7      7
         5      3  5       6   8 z    4 z    35 z        2  6   10 z    9 z
>   6 a z  - 4 a  z  - 35 z  + ---- - ---- - ----- - 12 a  z  + ----- + ---- - 
                                 6      4      2                  5       3
                                a      a      a                  a       a
 
       7                              8       8                9      9
    8 z         7    3  7      8   8 z    13 z       2  8   4 z    7 z
>   ---- - 6 a z  + a  z  + 8 z  + ---- + ----- + 3 a  z  + ---- + ---- + 
     a                               4      2                 3     a
                                    a      a                 a
 
                    10
         9    10   z
>   3 a z  + z   + ---
                    2
                   a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 107]], Vassiliev[3][Knot[11, Alternating, 107]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, Alternating, 107]][q, t]
Out[16]=   
          3     1       2       1       4       2       7      4      7
10 q + 8 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
               9  5    7  4    5  4    5  3    3  3    3  2      2   q t
              q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    7 q      3        5        5  2      7  2      7  3      9  3      9  4
>   --- + 9 q  t + 9 q  t + 7 q  t  + 9 q  t  + 5 q  t  + 7 q  t  + 3 q  t  + 
     t
 
       11  4    11  5      13  5    15  6
>   5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a107
K11a106
K11a106
K11a108
K11a108