PD Presentation: |
X19,29,20,28 X10,30,11,29 X1,31,2,30 X40,32,41,31 X11,21,12,20 X2,22,3,21 X41,23,42,22 X32,24,33,23 X3,13,4,12 X42,14,43,13 X33,15,34,14 X24,16,25,15 X43,5,44,4 X34,6,35,5 X25,7,26,6 X16,8,17,7 X35,45,36,44 X26,46,27,45 X17,47,18,46 X8,48,9,47 X27,37,28,36 X18,38,19,37 X9,39,10,38 X48,40,1,39 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[6, 5]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[6, 5]] |
Out[3]= | 24 |
In[4]:= | PD[TorusKnot[6, 5]] |
Out[4]= | PD[X[19, 29, 20, 28], X[10, 30, 11, 29], X[1, 31, 2, 30], X[40, 32, 41, 31],
> X[11, 21, 12, 20], X[2, 22, 3, 21], X[41, 23, 42, 22], X[32, 24, 33, 23],
> X[3, 13, 4, 12], X[42, 14, 43, 13], X[33, 15, 34, 14], X[24, 16, 25, 15],
> X[43, 5, 44, 4], X[34, 6, 35, 5], X[25, 7, 26, 6], X[16, 8, 17, 7],
> X[35, 45, 36, 44], X[26, 46, 27, 45], X[17, 47, 18, 46], X[8, 48, 9, 47],
> X[27, 37, 28, 36], X[18, 38, 19, 37], X[9, 39, 10, 38], X[48, 40, 1, 39]] |
In[5]:= | GaussCode[TorusKnot[6, 5]] |
Out[5]= | GaussCode[-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, -16,
> -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, -11, -14,
> -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24] |
In[6]:= | BR[TorusKnot[6, 5]] |
Out[6]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[7]:= | alex = Alexander[TorusKnot[6, 5]][t] |
Out[7]= | -10 -9 -5 -3 3 5 9 10
1 + t - t + t - t - t + t - t + t |
In[8]:= | Conway[TorusKnot[6, 5]][z] |
Out[8]= | 2 4 6 8 10 12 14
1 + 35 z + 329 z + 1288 z + 2518 z + 2718 z + 1729 z + 665 z +
16 18 20
> 152 z + 19 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]} |
Out[10]= | {5, 16} |
In[11]:= | J=Jones[TorusKnot[6, 5]][q] |
Out[11]= | 10 12 14 17 19
q + q + q - q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[6, 5]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[6, 5]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]} |
Out[15]= | {35, 175} |
In[16]:= | Kh[TorusKnot[6, 5]][q, t] |
Out[16]= | 19 21 23 2 27 3 25 4 27 4 29 5 31 5 27 6
q + q + q t + q t + q t + q t + q t + q t + q t +
29 6 31 7 33 7 29 8 31 8 33 9 35 9
> q t + q t + q t + q t + 2 q t + q t + 2 q t +
33 10 37 11 35 12 37 12 41 12 39 13 41 13
> q t + 2 q t + q t + q t + q t + q t + q t |