© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(23,2)
T(23,2)
T(25,2)
T(25,2)
T(6,5)
TubePlot
This page is passe. Go here instead!

   The 24-Crossing Torus Knot T(6,5)

Visit T(6,5)'s page at Knotilus!

Acknowledgement

PD Presentation: X19,29,20,28 X10,30,11,29 X1,31,2,30 X40,32,41,31 X11,21,12,20 X2,22,3,21 X41,23,42,22 X32,24,33,23 X3,13,4,12 X42,14,43,13 X33,15,34,14 X24,16,25,15 X43,5,44,4 X34,6,35,5 X25,7,26,6 X16,8,17,7 X35,45,36,44 X26,46,27,45 X17,47,18,46 X8,48,9,47 X27,37,28,36 X18,38,19,37 X9,39,10,38 X48,40,1,39

Gauss Code: {-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, -16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24}

Braid Representative:    

Alexander Polynomial: t-10 - t-9 + t-5 - t-3 + 1 - t3 + t5 - t9 + t10

Conway Polynomial: 1 + 35z2 + 329z4 + 1288z6 + 2518z8 + 2718z10 + 1729z12 + 665z14 + 152z16 + 19z18 + z20

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {5, 16}

Jones Polynomial: q10 + q12 + q14 - q17 - q19

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: Not Available.

Kauffman Polynomial: Not Available.

V2 and V3, the type 2 and 3 Vassiliev invariants: {35, 175}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=16 is the signature of T(6,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213χ
41            110
39             1-1
37           21 -1
35         2  1 -1
33       1 11   -1
31     1 12     0
29     11 1     1
27   11 1       1
25    1         1
23  1           1
211             1
191             1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[6, 5]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[6, 5]]
Out[3]=   
24
In[4]:=
PD[TorusKnot[6, 5]]
Out[4]=   
PD[X[19, 29, 20, 28], X[10, 30, 11, 29], X[1, 31, 2, 30], X[40, 32, 41, 31], 
 
>   X[11, 21, 12, 20], X[2, 22, 3, 21], X[41, 23, 42, 22], X[32, 24, 33, 23], 
 
>   X[3, 13, 4, 12], X[42, 14, 43, 13], X[33, 15, 34, 14], X[24, 16, 25, 15], 
 
>   X[43, 5, 44, 4], X[34, 6, 35, 5], X[25, 7, 26, 6], X[16, 8, 17, 7], 
 
>   X[35, 45, 36, 44], X[26, 46, 27, 45], X[17, 47, 18, 46], X[8, 48, 9, 47], 
 
>   X[27, 37, 28, 36], X[18, 38, 19, 37], X[9, 39, 10, 38], X[48, 40, 1, 39]]
In[5]:=
GaussCode[TorusKnot[6, 5]]
Out[5]=   
GaussCode[-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, -16, 
 
>   -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, -11, -14, 
 
>   -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24]
In[6]:=
BR[TorusKnot[6, 5]]
Out[6]=   
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]
In[7]:=
alex = Alexander[TorusKnot[6, 5]][t]
Out[7]=   
     -10    -9    -5    -3    3    5    9    10
1 + t    - t   + t   - t   - t  + t  - t  + t
In[8]:=
Conway[TorusKnot[6, 5]][z]
Out[8]=   
        2        4         6         8         10         12        14
1 + 35 z  + 329 z  + 1288 z  + 2518 z  + 2718 z   + 1729 z   + 665 z   + 
 
         16       18    20
>   152 z   + 19 z   + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{}
In[10]:=
{KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]}
Out[10]=   
{5, 16}
In[11]:=
J=Jones[TorusKnot[6, 5]][q]
Out[11]=   
 10    12    14    17    19
q   + q   + q   - q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{}
In[13]:=
A2Invariant[TorusKnot[6, 5]][q]
Out[13]=   
NotAvailable
In[14]:=
Kauffman[TorusKnot[6, 5]][a, z]
Out[14]=   
NotAvailable
In[15]:=
{Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]}
Out[15]=   
{35, 175}
In[16]:=
Kh[TorusKnot[6, 5]][q, t]
Out[16]=   
 19    21    23  2    27  3    25  4    27  4    29  5    31  5    27  6
q   + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     29  6    31  7    33  7    29  8      31  8    33  9      35  9
>   q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 2 q   t  + 
 
     33  10      37  11    35  12    37  12    41  12    39  13    41  13
>   q   t   + 2 q   t   + q   t   + q   t   + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(6,5)
T(23,2)
T(23,2)
T(25,2)
T(25,2)