PD Presentation: |
X21,49,22,48 X49,23,50,22 X23,51,24,50 X51,25,52,24 X25,53,26,52 X53,27,54,26 X27,1,28,54 X1,29,2,28 X29,3,30,2 X3,31,4,30 X31,5,32,4 X5,33,6,32 X33,7,34,6 X7,35,8,34 X35,9,36,8 X9,37,10,36 X37,11,38,10 X11,39,12,38 X39,13,40,12 X13,41,14,40 X41,15,42,14 X15,43,16,42 X43,17,44,16 X17,45,18,44 X45,19,46,18 X19,47,20,46 X47,21,48,20 |
Gauss Code: |
{-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 1, -2, 3, -4, 5, -6, 7} |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[27, 2]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[27, 2]] |
Out[3]= | 27 |
In[4]:= | PD[TorusKnot[27, 2]] |
Out[4]= | PD[X[21, 49, 22, 48], X[49, 23, 50, 22], X[23, 51, 24, 50], X[51, 25, 52, 24],
> X[25, 53, 26, 52], X[53, 27, 54, 26], X[27, 1, 28, 54], X[1, 29, 2, 28],
> X[29, 3, 30, 2], X[3, 31, 4, 30], X[31, 5, 32, 4], X[5, 33, 6, 32],
> X[33, 7, 34, 6], X[7, 35, 8, 34], X[35, 9, 36, 8], X[9, 37, 10, 36],
> X[37, 11, 38, 10], X[11, 39, 12, 38], X[39, 13, 40, 12], X[13, 41, 14, 40],
> X[41, 15, 42, 14], X[15, 43, 16, 42], X[43, 17, 44, 16], X[17, 45, 18, 44],
> X[45, 19, 46, 18], X[19, 47, 20, 46], X[47, 21, 48, 20]] |
In[5]:= | GaussCode[TorusKnot[27, 2]] |
Out[5]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23,
> -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14,
> -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 1, -2, 3, -4, 5,
> -6, 7] |
In[6]:= | BR[TorusKnot[27, 2]] |
Out[6]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
> 1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[27, 2]][t] |
Out[7]= | -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
-1 + t - t + t - t + t - t + t - t + t - t + t -
-2 1 2 3 4 5 6 7 8 9 10 11 12 13
> t + - + t - t + t - t + t - t + t - t + t - t + t - t + t
t |
In[8]:= | Conway[TorusKnot[27, 2]][z] |
Out[8]= | 2 4 6 8 10 12 14
1 + 91 z + 1365 z + 8008 z + 24310 z + 43758 z + 50388 z + 38760 z +
16 18 20 22 24 26
> 20349 z + 7315 z + 1771 z + 276 z + 25 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[27, 2]], KnotSignature[TorusKnot[27, 2]]} |
Out[10]= | {27, 26} |
In[11]:= | J=Jones[TorusKnot[27, 2]][q] |
Out[11]= | 13 15 16 17 18 19 20 21 22 23 24 25 26
q + q - q + q - q + q - q + q - q + q - q + q - q +
27 28 29 30 31 32 33 34 35 36 37 38
> q - q + q - q + q - q + q - q + q - q + q - q +
39 40
> q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[27, 2]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[27, 2]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[27, 2]], Vassiliev[3][TorusKnot[27, 2]]} |
Out[15]= | {91, 819} |
In[16]:= | Kh[TorusKnot[27, 2]][q, t] |
Out[16]= | 25 27 29 2 33 3 33 4 37 5 37 6 41 7 41 8
q + q + q t + q t + q t + q t + q t + q t + q t +
45 9 45 10 49 11 49 12 53 13 53 14 57 15
> q t + q t + q t + q t + q t + q t + q t +
57 16 61 17 61 18 65 19 65 20 69 21 69 22
> q t + q t + q t + q t + q t + q t + q t +
73 23 73 24 77 25 77 26 81 27
> q t + q t + q t + q t + q t |