PD Presentation: |
X38,4,39,3 X21,5,22,4 X22,40,23,39 X5,41,6,40 X6,24,7,23 X41,25,42,24 X42,8,43,7 X25,9,26,8 X26,44,27,43 X9,45,10,44 X10,28,11,27 X45,29,46,28 X46,12,47,11 X29,13,30,12 X30,48,31,47 X13,49,14,48 X14,32,15,31 X49,33,50,32 X50,16,51,15 X33,17,34,16 X34,52,35,51 X17,1,18,52 X18,36,19,35 X1,37,2,36 X2,20,3,19 X37,21,38,20 |
Gauss Code: |
{-24, -25, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22} |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | TubePlot[TorusKnot[13, 3]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[13, 3]] |
Out[3]= | 26 |
In[4]:= | PD[TorusKnot[13, 3]] |
Out[4]= | PD[X[38, 4, 39, 3], X[21, 5, 22, 4], X[22, 40, 23, 39], X[5, 41, 6, 40],
> X[6, 24, 7, 23], X[41, 25, 42, 24], X[42, 8, 43, 7], X[25, 9, 26, 8],
> X[26, 44, 27, 43], X[9, 45, 10, 44], X[10, 28, 11, 27], X[45, 29, 46, 28],
> X[46, 12, 47, 11], X[29, 13, 30, 12], X[30, 48, 31, 47], X[13, 49, 14, 48],
> X[14, 32, 15, 31], X[49, 33, 50, 32], X[50, 16, 51, 15], X[33, 17, 34, 16],
> X[34, 52, 35, 51], X[17, 1, 18, 52], X[18, 36, 19, 35], X[1, 37, 2, 36],
> X[2, 20, 3, 19], X[37, 21, 38, 20]] |
In[5]:= | GaussCode[TorusKnot[13, 3]] |
Out[5]= | GaussCode[-24, -25, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20,
> -22, -23, 25, 26, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21,
> 23, 24, -26, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22] |
In[6]:= | BR[TorusKnot[13, 3]] |
Out[6]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
> 1, 2}] |
In[7]:= | alex = Alexander[TorusKnot[13, 3]][t] |
Out[7]= | -12 -11 -9 -8 -6 -5 -3 -2 2 3 5 6 8
1 + t - t + t - t + t - t + t - t - t + t - t + t - t +
9 11 12
> t - t + t |
In[8]:= | Conway[TorusKnot[13, 3]][z] |
Out[8]= | 2 4 6 8 10 12 14
1 + 56 z + 770 z + 4081 z + 11033 z + 17391 z + 17187 z + 11067 z +
16 18 20 22 24
> 4709 z + 1312 z + 230 z + 23 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {} |
In[10]:= | {KnotDet[TorusKnot[13, 3]], KnotSignature[TorusKnot[13, 3]]} |
Out[10]= | {1, 16} |
In[11]:= | J=Jones[TorusKnot[13, 3]][q] |
Out[11]= | 12 14 26
q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {} |
In[13]:= | A2Invariant[TorusKnot[13, 3]][q] |
Out[13]= | NotAvailable |
In[14]:= | Kauffman[TorusKnot[13, 3]][a, z] |
Out[14]= | NotAvailable |
In[15]:= | {Vassiliev[2][TorusKnot[13, 3]], Vassiliev[3][TorusKnot[13, 3]]} |
Out[15]= | {56, 364} |
In[16]:= | Kh[TorusKnot[13, 3]][q, t] |
Out[16]= | 23 25 27 2 31 3 29 4 31 4 33 5 35 5 33 6
q + q + q t + q t + q t + q t + q t + q t + q t +
37 7 35 8 37 8 39 9 41 9 39 10 43 11 41 12
> q t + q t + q t + q t + q t + q t + q t + q t +
43 12 45 13 47 13 45 14 49 15 47 16 49 16
> q t + q t + q t + q t + q t + q t + q t +
51 17 53 17
> q t + q t |