© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(21,2)
T(21,2)
T(23,2)
T(23,2)
T(11,3)
TubePlot
This page is passe. Go here instead!

   The 22-Crossing Torus Knot T(11,3)

Visit T(11,3)'s page at Knotilus!

Acknowledgement

PD Presentation: X7,37,8,36 X22,38,23,37 X23,9,24,8 X38,10,39,9 X39,25,40,24 X10,26,11,25 X11,41,12,40 X26,42,27,41 X27,13,28,12 X42,14,43,13 X43,29,44,28 X14,30,15,29 X15,1,16,44 X30,2,31,1 X31,17,32,16 X2,18,3,17 X3,33,4,32 X18,34,19,33 X19,5,20,4 X34,6,35,5 X35,21,36,20 X6,22,7,21

Gauss Code: {14, -16, -17, 19, 20, -22, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 1, 2, -4, -5, 7, 8, -10, -11, 13}

Braid Representative:    

Alexander Polynomial: t-10 - t-9 + t-7 - t-6 + t-4 - t-3 + t-1 - 1 + t - t3 + t4 - t6 + t7 - t9 + t10

Conway Polynomial: 1 + 40z2 + 390z4 + 1443z6 + 2665z8 + 2782z10 + 1742z12 + 666z14 + 152z16 + 19z18 + z20

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {1, 16}

Jones Polynomial: q10 + q12 - q22

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: Not Available.

Kauffman Polynomial: Not Available.

V2 and V3, the type 2 and 3 Vassiliev invariants: {40, 220}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=16 is the signature of T(11,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415χ
45               1-1
43             1  -1
41             11 0
39           11   0
37         1  1   0
35         11     0
33       11       0
31     1  1       0
29     11         0
27   11           0
25    1           1
23  1             1
211               1
191               1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[11, 3]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[11, 3]]
Out[3]=   
22
In[4]:=
PD[TorusKnot[11, 3]]
Out[4]=   
PD[X[7, 37, 8, 36], X[22, 38, 23, 37], X[23, 9, 24, 8], X[38, 10, 39, 9], 
 
>   X[39, 25, 40, 24], X[10, 26, 11, 25], X[11, 41, 12, 40], X[26, 42, 27, 41], 
 
>   X[27, 13, 28, 12], X[42, 14, 43, 13], X[43, 29, 44, 28], X[14, 30, 15, 29], 
 
>   X[15, 1, 16, 44], X[30, 2, 31, 1], X[31, 17, 32, 16], X[2, 18, 3, 17], 
 
>   X[3, 33, 4, 32], X[18, 34, 19, 33], X[19, 5, 20, 4], X[34, 6, 35, 5], 
 
>   X[35, 21, 36, 20], X[6, 22, 7, 21]]
In[5]:=
GaussCode[TorusKnot[11, 3]]
Out[5]=   
GaussCode[14, -16, -17, 19, 20, -22, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, 
 
>   -18, -19, 21, 22, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 
 
>   1, 2, -4, -5, 7, 8, -10, -11, 13]
In[6]:=
BR[TorusKnot[11, 3]]
Out[6]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[7]:=
alex = Alexander[TorusKnot[11, 3]][t]
Out[7]=   
      -10    -9    -7    -6    -4    -3   1        3    4    6    7    9    10
-1 + t    - t   + t   - t   + t   - t   + - + t - t  + t  - t  + t  - t  + t
                                          t
In[8]:=
Conway[TorusKnot[11, 3]][z]
Out[8]=   
        2        4         6         8         10         12        14
1 + 40 z  + 390 z  + 1443 z  + 2665 z  + 2782 z   + 1742 z   + 666 z   + 
 
         16       18    20
>   152 z   + 19 z   + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{}
In[10]:=
{KnotDet[TorusKnot[11, 3]], KnotSignature[TorusKnot[11, 3]]}
Out[10]=   
{1, 16}
In[11]:=
J=Jones[TorusKnot[11, 3]][q]
Out[11]=   
 10    12    22
q   + q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{}
In[13]:=
A2Invariant[TorusKnot[11, 3]][q]
Out[13]=   
NotAvailable
In[14]:=
Kauffman[TorusKnot[11, 3]][a, z]
Out[14]=   
NotAvailable
In[15]:=
{Vassiliev[2][TorusKnot[11, 3]], Vassiliev[3][TorusKnot[11, 3]]}
Out[15]=   
{40, 220}
In[16]:=
Kh[TorusKnot[11, 3]][q, t]
Out[16]=   
 19    21    23  2    27  3    25  4    27  4    29  5    31  5    29  6
q   + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     33  7    31  8    33  8    35  9    37  9    35  10    39  11    37  12
>   q   t  + q   t  + q   t  + q   t  + q   t  + q   t   + q   t   + q   t   + 
 
     39  12    41  13    43  13    41  14    45  15
>   q   t   + q   t   + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(11,3)
T(21,2)
T(21,2)
T(23,2)
T(23,2)