© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n98
K11n98
K11n100
K11n100
K11n99
Knotscape
This page is passe. Go here instead!

   The Knot K11n99

Visit K11n99's page at Knotilus!

Acknowledgement

K11n99 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,14,6,15 X7,12,8,13 X9,19,10,18 X2,11,3,12 X13,6,14,7 X15,20,16,21 X17,22,18,1 X19,9,20,8 X21,16,22,17

Gauss Code: {1, -6, 2, -1, -3, 7, -4, 10, -5, -2, 6, 4, -7, 3, -8, 11, -9, 5, -10, 8, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 -12 -18 2 -6 -20 -22 -8 -16

Alexander Polynomial: - 3t-2 + 10t-1 - 13 + 10t - 3t2

Conway Polynomial: 1 - 2z2 - 3z4

Other knots with the same Alexander/Conway Polynomial: {10144, ...}

Determinant and Signature: {39, -2}

Jones Polynomial: q-9 - 2q-8 + 4q-7 - 6q-6 + 6q-5 - 7q-4 + 6q-3 - 4q-2 + 3q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 + 2q-22 - q-20 - q-16 - 3q-14 - q-12 - 2q-10 + 2q-8 + 2q-6 + q-4 + 3q-2

HOMFLY-PT Polynomial: 4a2 + 3a2z2 - 4a4 - 5a4z2 - 2a4z4 - a6z2 - a6z4 + a8 + a8z2

Kauffman Polynomial: - 4a2 + 5a2z2 + 5a3z - 4a3z3 + 3a3z5 - 4a4 + 4a4z2 + 3a4z4 - 2a4z6 + a4z8 + 11a5z - 21a5z3 + 14a5z5 - 4a5z7 + a5z9 - 9a6z2 + 12a6z4 - 9a6z6 + 3a6z8 + 5a7z - 11a7z3 + 4a7z5 - 2a7z7 + a7z9 + a8 - 4a8z2 + 5a8z4 - 6a8z6 + 2a8z8 - a9z + 6a9z3 - 7a9z5 + 2a9z7 + 4a10z2 - 4a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1199. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1        3
j = -3       21
j = -5      42 
j = -7     32  
j = -9    34   
j = -11   33    
j = -13  13     
j = -15 13      
j = -17 1       
j = -191        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 99]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 99]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 14, 6, 15], X[7, 12, 8, 13], 
 
>   X[9, 19, 10, 18], X[2, 11, 3, 12], X[13, 6, 14, 7], X[15, 20, 16, 21], 
 
>   X[17, 22, 18, 1], X[19, 9, 20, 8], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 99]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 7, -4, 10, -5, -2, 6, 4, -7, 3, -8, 11, -9, 5, -10, 
 
>   8, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 99]]
Out[5]=   
DTCode[4, 10, -14, -12, -18, 2, -6, -20, -22, -8, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 99]][t]
Out[6]=   
      3    10             2
-13 - -- + -- + 10 t - 3 t
       2   t
      t
In[7]:=
Conway[Knot[11, NonAlternating, 99]][z]
Out[7]=   
       2      4
1 - 2 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 144], Knot[11, NonAlternating, 99]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 99]], KnotSignature[Knot[11, NonAlternating, 99]]}
Out[9]=   
{39, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 99]][q]
Out[10]=   
 -9   2    4    6    6    7    6    4    3
q   - -- + -- - -- + -- - -- + -- - -- + -
       8    7    6    5    4    3    2   q
      q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 99]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 99]][q]
Out[12]=   
 -28    2     -20    -16    3     -12    2    2    2     -4   3
q    + --- - q    - q    - --- - q    - --- + -- + -- + q   + --
        22                  14           10    8    6          2
       q                   q            q     q    q          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 99]][a, z]
Out[13]=   
   2      4    8      2  2      4  2    6  2    8  2      4  4    6  4
4 a  - 4 a  + a  + 3 a  z  - 5 a  z  - a  z  + a  z  - 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 99]][a, z]
Out[14]=   
    2      4    8      3         5        7      9        2  2      4  2
-4 a  - 4 a  + a  + 5 a  z + 11 a  z + 5 a  z - a  z + 5 a  z  + 4 a  z  - 
 
       6  2      8  2      10  2      3  3       5  3       7  3      9  3
>   9 a  z  - 4 a  z  + 4 a   z  - 4 a  z  - 21 a  z  - 11 a  z  + 6 a  z  + 
 
       4  4       6  4      8  4      10  4      3  5       5  5      7  5
>   3 a  z  + 12 a  z  + 5 a  z  - 4 a   z  + 3 a  z  + 14 a  z  + 4 a  z  - 
 
       9  5      4  6      6  6      8  6    10  6      5  7      7  7
>   7 a  z  - 2 a  z  - 9 a  z  - 6 a  z  + a   z  - 4 a  z  - 2 a  z  + 
 
       9  7    4  8      6  8      8  8    5  9    7  9
>   2 a  z  + a  z  + 3 a  z  + 2 a  z  + a  z  + a  z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 99]], Vassiliev[3][Knot[11, NonAlternating, 99]]}
Out[15]=   
{-2, 6}
In[16]:=
Kh[Knot[11, NonAlternating, 99]][q, t]
Out[16]=   
 -3   3     1        1        1        3        1        3        3
q   + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
      q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
          q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        3       4       3       2       4      2      2
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ----
     11  4    9  4    9  3    7  3    7  2    5  2    5      3
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n99
K11n98
K11n98
K11n100
K11n100