© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n91
K11n91
K11n93
K11n93
K11n92
Knotscape
This page is passe. Go here instead!

   The Knot K11n92

Visit K11n92's page at Knotilus!

Acknowledgement

K11n92 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X7,20,8,21 X9,16,10,17 X2,11,3,12 X13,19,14,18 X15,8,16,9 X17,1,18,22 X19,6,20,7 X21,15,22,14

Gauss Code: {1, -6, 2, -1, 3, 10, -4, 8, -5, -2, 6, -3, -7, 11, -8, 5, -9, 7, -10, 4, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 12 -20 -16 2 -18 -8 -22 -6 -14

Alexander Polynomial: t-3 - 3t-2 + 3t-1 - 1 + 3t - 3t2 + t3

Conway Polynomial: 1 + 3z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {15, -2}

Jones Polynomial: q-3 - 2q-2 + 2q-1 - 2 + 3q - 2q2 + 2q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {10136, ...}

A2 (sl(3)) Invariant: q-14 - q-8 - q-6 + 2 + q2 + q4 + q6 - q12

HOMFLY-PT Polynomial: - a-2 - 3a-2z2 - a-2z4 + 4 + 7z2 + 5z4 + z6 - 3a2 - 4a2z2 - a2z4 + a4

Kauffman Polynomial: - a-3z + 6a-3z3 - 5a-3z5 + a-3z7 + a-2 - 9a-2z2 + 17a-2z4 - 11a-2z6 + 2a-2z8 - a-1z + 4a-1z3 + a-1z5 - 4a-1z7 + a-1z9 + 4 - 18z2 + 28z4 - 17z6 + 3z8 + az - 3az3 + 6az5 - 5az7 + az9 + 3a2 - 10a2z2 + 11a2z4 - 6a2z6 + a2z8 + a3z - a3z3 + a4 - a4z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1192. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9       1
j = 7      1 
j = 5     11 
j = 3    21  
j = 1  111   
j = -1  22    
j = -3 11     
j = -5 1      
j = -71       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 92]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 92]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[7, 20, 8, 21], 
 
>   X[9, 16, 10, 17], X[2, 11, 3, 12], X[13, 19, 14, 18], X[15, 8, 16, 9], 
 
>   X[17, 1, 18, 22], X[19, 6, 20, 7], X[21, 15, 22, 14]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 92]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, 10, -4, 8, -5, -2, 6, -3, -7, 11, -8, 5, -9, 7, -10, 
 
>   4, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 92]]
Out[5]=   
DTCode[4, 10, 12, -20, -16, 2, -18, -8, -22, -6, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 92]][t]
Out[6]=   
      -3   3    3            2    3
-1 + t   - -- + - + 3 t - 3 t  + t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 92]][z]
Out[7]=   
       4    6
1 + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 92]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 92]], KnotSignature[Knot[11, NonAlternating, 92]]}
Out[9]=   
{15, -2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 92]][q]
Out[10]=   
      -3   2    2            2      3    4
-2 + q   - -- + - + 3 q - 2 q  + 2 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[10, 136], Knot[11, NonAlternating, 92]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 92]][q]
Out[12]=   
     -14    -8    -6    2    4    6    12
2 + q    - q   - q   + q  + q  + q  - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 92]][a, z]
Out[13]=   
                                2                     4
     -2      2    4      2   3 z       2  2      4   z     2  4    6
4 - a   - 3 a  + a  + 7 z  - ---- - 4 a  z  + 5 z  - -- - a  z  + z
                               2                      2
                              a                      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 92]][a, z]
Out[14]=   
                                                       2
     -2      2    4   z    z          3         2   9 z        2  2    4  2
4 + a   + 3 a  + a  - -- - - + a z + a  z - 18 z  - ---- - 10 a  z  - a  z  + 
                       3   a                          2
                      a                              a
 
       3      3                                4                 5    5
    6 z    4 z         3    3  3       4   17 z        2  4   5 z    z
>   ---- + ---- - 3 a z  - a  z  + 28 z  + ----- + 11 a  z  - ---- + -- + 
      3     a                                2                  3    a
     a                                      a                  a
 
                         6              7      7                      8
         5       6   11 z       2  6   z    4 z         7      8   2 z
>   6 a z  - 17 z  - ----- - 6 a  z  + -- - ---- - 5 a z  + 3 z  + ---- + 
                       2                3    a                       2
                      a                a                            a
 
             9
     2  8   z       9
>   a  z  + -- + a z
            a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 92]], Vassiliev[3][Knot[11, NonAlternating, 92]]}
Out[15]=   
{0, 1}
In[16]:=
Kh[Knot[11, NonAlternating, 92]][q, t]
Out[16]=   
 -3   2         1      1      1     2 t            2      3  2    3  3
q   + - + q + ----- + ---- + ---- + --- + q t + q t  + 2 q  t  + q  t  + 
      q        7  2    5      3      q
              q  t    q  t   q  t
 
     5  3    5  4    7  4    9  5
>   q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n92
K11n91
K11n91
K11n93
K11n93