© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n8
K11n8
K11n10
K11n10
K11n9
Knotscape
This page is passe. Go here instead!

   The Knot K11n9

Visit K11n9's page at Knotilus!

Acknowledgement

K11n9 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X14,8,15,7 X2,9,3,10 X11,19,12,18 X6,14,7,13 X15,21,16,20 X17,1,18,22 X19,13,20,12 X21,17,22,16

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -2, 5, -3, -6, 10, 7, -4, -8, 11, -9, 6, -10, 8, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 14 2 -18 6 -20 -22 -12 -16

Alexander Polynomial: - t-4 + 3t-3 - t-2 - 4t-1 + 7 - 4t - t2 + 3t3 - t4

Conway Polynomial: 1 + 3z2 - 3z4 - 5z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {5, 4}

Jones Polynomial: q - q2 + 2q3 - q4 + q6 - 2q7 + 2q8 - 2q9 + 2q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q4 + q6 + q8 + 2q10 + q12 - q14 - q16 - q18 - 2q20 + q22 + 2q26 + q32 - 2q34

HOMFLY-PT Polynomial: - 2a-10 - 2a-10z2 + 6a-8 + 12a-8z2 + 7a-8z4 + a-8z6 - 8a-6 - 17a-6z2 - 16a-6z4 - 7a-6z6 - a-6z8 + 5a-4 + 10a-4z2 + 6a-4z4 + a-4z6

Kauffman Polynomial: a-13z - 3a-13z3 + a-13z5 + 4a-12z2 - 7a-12z4 + 2a-12z6 - a-11z + a-11z3 - 3a-11z5 + a-11z7 + 2a-10 - a-10z2 - 3a-10z4 + a-10z6 - 4a-9z + 11a-9z3 - 7a-9z5 + a-9z7 + 6a-8 - 22a-8z2 + 31a-8z4 - 15a-8z6 + 2a-8z8 - 4a-7z + 5a-7z3 + 6a-7z5 - 6a-7z7 + a-7z9 + 8a-6 - 32a-6z2 + 43a-6z4 - 21a-6z6 + 3a-6z8 - 2a-5z - 2a-5z3 + 9a-5z5 - 6a-5z7 + a-5z9 + 5a-4 - 15a-4z2 + 16a-4z4 - 7a-4z6 + a-4z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 7}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          1 
j = 19         11 
j = 17       121  
j = 15      121   
j = 13     122    
j = 11    122     
j = 9   111      
j = 7  111       
j = 5 12         
j = 3            
j = 11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 9]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 9]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 8, 15, 7], 
 
>   X[2, 9, 3, 10], X[11, 19, 12, 18], X[6, 14, 7, 13], X[15, 21, 16, 20], 
 
>   X[17, 1, 18, 22], X[19, 13, 20, 12], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 9]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -2, 5, -3, -6, 10, 7, -4, -8, 11, -9, 6, -10, 
 
>   8, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 9]]
Out[5]=   
DTCode[4, 8, 10, 14, 2, -18, 6, -20, -22, -12, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 9]][t]
Out[6]=   
     -4   3     -2   4          2      3    4
7 - t   + -- - t   - - - 4 t - t  + 3 t  - t
           3         t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 9]][z]
Out[7]=   
       2      4      6    8
1 + 3 z  - 3 z  - 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 9]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 9]], KnotSignature[Knot[11, NonAlternating, 9]]}
Out[9]=   
{5, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 9]][q]
Out[10]=   
     2      3    4    6      7      8      9      10    11
q - q  + 2 q  - q  + q  - 2 q  + 2 q  - 2 q  + 2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 9]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 9]][q]
Out[12]=   
 4    6    8      10    12    14    16    18      20    22      26    32      34
q  + q  + q  + 2 q   + q   - q   - q   - q   - 2 q   + q   + 2 q   + q   - 2 q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 9]][a, z]
Out[13]=   
                        2       2       2       2      4       4      4    6
-2    6    8    5    2 z    12 z    17 z    10 z    7 z    16 z    6 z    z
--- + -- - -- + -- - ---- + ----- - ----- + ----- + ---- - ----- + ---- + -- - 
 10    8    6    4    10      8       6       4       8      6       4     8
a     a    a    a    a       a       a       a       a      a       a     a
 
       6    6    8
    7 z    z    z
>   ---- + -- - --
      6     4    6
     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 9]][a, z]
Out[14]=   
                                                      2    2        2       2
 2    6    8    5     z     z    4 z   4 z   2 z   4 z    z     22 z    32 z
--- + -- + -- + -- + --- - --- - --- - --- - --- + ---- - --- - ----- - ----- - 
 10    8    6    4    13    11    9     7     5     12     10     8       6
a     a    a    a    a     a     a     a     a     a      a      a       a
 
        2      3    3        3      3      3      4      4       4       4
    15 z    3 z    z     11 z    5 z    2 z    7 z    3 z    31 z    43 z
>   ----- - ---- + --- + ----- + ---- - ---- - ---- - ---- + ----- + ----- + 
      4      13     11     9       7      5     12     10      8       6
     a      a      a      a       a      a     a      a       a       a
 
        4    5       5      5      5      5      6    6        6       6
    16 z    z     3 z    7 z    6 z    9 z    2 z    z     15 z    21 z
>   ----- + --- - ---- - ---- + ---- + ---- + ---- + --- - ----- - ----- - 
      4      13    11      9      7      5     12     10     8       6
     a      a     a       a      a      a     a      a      a       a
 
       6    7     7      7      7      8      8    8    9    9
    7 z    z     z    6 z    6 z    2 z    3 z    z    z    z
>   ---- + --- + -- - ---- - ---- + ---- + ---- + -- + -- + --
      4     11    9     7      5      8      6     4    7    5
     a     a     a     a      a      a      a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 9]], Vassiliev[3][Knot[11, NonAlternating, 9]]}
Out[15]=   
{3, 7}
In[16]:=
Kh[Knot[11, NonAlternating, 9]][q, t]
Out[16]=   
                  5
   5    7   q    q     7      9      7  2    9  2    11  2    9  3      11  3
2 q  + q  + -- + -- + q  t + q  t + q  t  + q  t  + q   t  + q  t  + 2 q   t  + 
             2   t
            t
 
     13  3      11  4      13  4    15  4      13  5      15  5    17  5
>   q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + 2 q   t  + q   t  + 
 
     15  6      17  6    17  7    19  7    19  8    21  8    23  9
>   q   t  + 2 q   t  + q   t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n9
K11n8
K11n8
K11n10
K11n10