© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n85
K11n85
K11n87
K11n87
K11n86
Knotscape
This page is passe. Go here instead!

   The Knot K11n86

Visit K11n86's page at Knotilus!

Acknowledgement

K11n86 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X7,15,8,14 X9,16,10,17 X2,11,3,12 X13,19,14,18 X15,20,16,21 X17,1,18,22 X19,6,20,7 X21,9,22,8

Gauss Code: {1, -6, 2, -1, 3, 10, -4, 11, -5, -2, 6, -3, -7, 4, -8, 5, -9, 7, -10, 8, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 10 12 -14 -16 2 -18 -20 -22 -6 -8

Alexander Polynomial: - t-3 + 4t-2 - 7t-1 + 9 - 7t + 4t2 - t3

Conway Polynomial: 1 - 2z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {33, 0}

Jones Polynomial: q-2 - 3q-1 + 5 - 5q + 6q2 - 5q3 + 4q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-6 - q-4 + q-2 + 2q4 + 2q8 - q10 - q12 - q16 + q18

HOMFLY-PT Polynomial: 2a-4z2 + a-4z4 - 4a-2z2 - 4a-2z4 - a-2z6 + 1 + 2z2 + z4

Kauffman Polynomial: a-6z2 - 3a-6z4 + a-6z6 - a-5z + 8a-5z3 - 11a-5z5 + 3a-5z7 - 3a-4z2 + 9a-4z4 - 11a-4z6 + 3a-4z8 - 3a-3z + 13a-3z3 - 11a-3z5 + a-3z9 - 9a-2z2 + 22a-2z4 - 17a-2z6 + 4a-2z8 - 3a-1z + 7a-1z3 - 3a-1z7 + a-1z9 + 1 - 5z2 + 10z4 - 5z6 + z8 - az + 2az3

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1186. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13        1
j = 11       2 
j = 9      21 
j = 7     32  
j = 5    32   
j = 3   23    
j = 1  33     
j = -1 13      
j = -3 2       
j = -51        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 86]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 86]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[7, 15, 8, 14], 
 
>   X[9, 16, 10, 17], X[2, 11, 3, 12], X[13, 19, 14, 18], X[15, 20, 16, 21], 
 
>   X[17, 1, 18, 22], X[19, 6, 20, 7], X[21, 9, 22, 8]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 86]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, 10, -4, 11, -5, -2, 6, -3, -7, 4, -8, 5, -9, 7, -10, 
 
>   8, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 86]]
Out[5]=   
DTCode[4, 10, 12, -14, -16, 2, -18, -20, -22, -6, -8]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 86]][t]
Out[6]=   
     -3   4    7            2    3
9 - t   + -- - - - 7 t + 4 t  - t
           2   t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 86]][z]
Out[7]=   
       4    6
1 - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 86]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 86]], KnotSignature[Knot[11, NonAlternating, 86]]}
Out[9]=   
{33, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 86]][q]
Out[10]=   
     -2   3            2      3      4      5    6
5 + q   - - - 5 q + 6 q  - 5 q  + 4 q  - 3 q  + q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 86]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 86]][q]
Out[12]=   
 -6    -4    -2      4      8    10    12    16    18
q   - q   + q   + 2 q  + 2 q  - q   - q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 86]][a, z]
Out[13]=   
              2      2         4      4    6
       2   2 z    4 z     4   z    4 z    z
1 + 2 z  + ---- - ---- + z  + -- - ---- - --
             4      2          4     2     2
            a      a          a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 86]][a, z]
Out[14]=   
                                   2      2      2      3       3      3
    z    3 z   3 z            2   z    3 z    9 z    8 z    13 z    7 z
1 - -- - --- - --- - a z - 5 z  + -- - ---- - ---- + ---- + ----- + ---- + 
     5    3     a                  6     4      2      5      3      a
    a    a                        a     a      a      a      a
 
                        4      4       4       5       5           6       6
         3       4   3 z    9 z    22 z    11 z    11 z       6   z    11 z
>   2 a z  + 10 z  - ---- + ---- + ----- - ----- - ----- - 5 z  + -- - ----- - 
                       6      4      2       5       3             6     4
                      a      a      a       a       a             a     a
 
        6      7      7           8      8    9    9
    17 z    3 z    3 z     8   3 z    4 z    z    z
>   ----- + ---- - ---- + z  + ---- + ---- + -- + --
      2       5     a            4      2     3   a
     a       a                  a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 86]], Vassiliev[3][Knot[11, NonAlternating, 86]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 86]][q, t]
Out[16]=   
3           1      2      1               3        3  2      5  2      5  3
- + 3 q + ----- + ---- + --- + 3 q t + 2 q  t + 3 q  t  + 3 q  t  + 2 q  t  + 
q          5  2    3     q t
          q  t    q  t
 
       7  3      7  4      9  4    9  5      11  5    13  6
>   3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n86
K11n85
K11n85
K11n87
K11n87