© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n81
K11n81
K11n83
K11n83
K11n82
Knotscape
This page is passe. Go here instead!

   The Knot K11n82

Visit K11n82's page at Knotilus!

Acknowledgement

K11n82 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X5,17,6,16 X7,12,8,13 X2,9,3,10 X11,18,12,19 X13,21,14,20 X15,1,16,22 X17,10,18,11 X19,7,20,6 X21,15,22,14

Gauss Code: {1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 4, -7, 11, -8, 3, -9, 6, -10, 7, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 8 -16 -12 2 -18 -20 -22 -10 -6 -14

Alexander Polynomial: t-3 - 3t-2 + 4t-1 - 3 + 4t - 3t2 + t3

Conway Polynomial: 1 + z2 + 3z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {19, 2}

Jones Polynomial: - q-4 + 2q-3 - 2q-2 + 3q-1 - 3 + 3q - 2q2 + 2q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-12 + q-6 + q-4 + 1 + q4 + q6 - q12

HOMFLY-PT Polynomial: - a-2 - 3a-2z2 - a-2z4 + 3 + 7z2 + 5z4 + z6 - a2 - 3a2z2 - a2z4

Kauffman Polynomial: a-5z + a-4z2 + 2a-3z - 3a-3z3 + a-3z5 + a-2 - 6a-2z2 + 8a-2z4 - 5a-2z6 + a-2z8 + a-1z - 7a-1z3 + 8a-1z5 - 5a-1z7 + a-1z9 + 3 - 15z2 + 25z4 - 16z6 + 3z8 - az + 2az3 + 2az5 - 4az7 + az9 + a2 - 8a2z2 + 17a2z4 - 11a2z6 + 2a2z8 - a3z + 6a3z3 - 5a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1182. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 9        1
j = 7       1 
j = 5      11 
j = 3     21  
j = 1    22   
j = -1   11    
j = -3  12     
j = -5 11      
j = -7 1       
j = -91        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 82]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 82]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[5, 17, 6, 16], X[7, 12, 8, 13], 
 
>   X[2, 9, 3, 10], X[11, 18, 12, 19], X[13, 21, 14, 20], X[15, 1, 16, 22], 
 
>   X[17, 10, 18, 11], X[19, 7, 20, 6], X[21, 15, 22, 14]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 82]]
Out[4]=   
GaussCode[1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 4, -7, 11, -8, 3, -9, 6, -10, 
 
>   7, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 82]]
Out[5]=   
DTCode[4, 8, -16, -12, 2, -18, -20, -22, -10, -6, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 82]][t]
Out[6]=   
      -3   3    4            2    3
-3 + t   - -- + - + 4 t - 3 t  + t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 82]][z]
Out[7]=   
     2      4    6
1 + z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 82]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 82]], KnotSignature[Knot[11, NonAlternating, 82]]}
Out[9]=   
{19, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 82]][q]
Out[10]=   
      -4   2    2    3            2      3    4
-3 - q   + -- - -- + - + 3 q - 2 q  + 2 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 82]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 82]][q]
Out[12]=   
     -12    -6    -4    4    6    12
1 - q    + q   + q   + q  + q  - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 82]][a, z]
Out[13]=   
                         2                     4
     -2    2      2   3 z       2  2      4   z     2  4    6
3 - a   - a  + 7 z  - ---- - 3 a  z  + 5 z  - -- - a  z  + z
                        2                      2
                       a                      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 82]][a, z]
Out[14]=   
                                                    2      2                3
     -2    2   z    2 z   z          3         2   z    6 z       2  2   3 z
3 + a   + a  + -- + --- + - - a z - a  z - 15 z  + -- - ---- - 8 a  z  - ---- - 
                5    3    a                         4     2                3
               a    a                              a     a                a
 
       3                                 4               5      5
    7 z         3      3  3       4   8 z        2  4   z    8 z         5
>   ---- + 2 a z  + 6 a  z  + 25 z  + ---- + 17 a  z  + -- + ---- + 2 a z  - 
     a                                  2                3    a
                                       a                a
 
                         6                 7                            8
       3  5       6   5 z        2  6   5 z         7    3  7      8   z
>   5 a  z  - 16 z  - ---- - 11 a  z  - ---- - 4 a z  + a  z  + 3 z  + -- + 
                        2                a                              2
                       a                                               a
 
               9
       2  8   z       9
>   2 a  z  + -- + a z
              a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 82]], Vassiliev[3][Knot[11, NonAlternating, 82]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, NonAlternating, 82]][q, t]
Out[16]=   
         3     1       1       1       1       1       2      1      1    2 q
2 q + 2 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
     3      5      5  2    7  2    9  3
>   q  t + q  t + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n82
K11n81
K11n81
K11n83
K11n83