© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n69
K11n69
K11n71
K11n71
K11n70
Knotscape
This page is passe. Go here instead!

   The Knot K11n70

Visit K11n70's page at Knotilus!

Acknowledgement

K11n70 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,14,6,15 X2837 X9,19,10,18 X11,21,12,20 X13,6,14,7 X15,22,16,1 X17,13,18,12 X19,11,20,10 X21,16,22,17

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 9, -7, 3, -8, 11, -9, 5, -10, 6, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 -18 -20 -6 -22 -12 -10 -16

Alexander Polynomial: - t-3 + 2t-2 - 2t-1 + 3 - 2t + 2t2 - t3

Conway Polynomial: 1 - 3z2 - 4z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {13, 4}

Jones Polynomial: q-2 - q-1 + 2 - 2q + 2q2 - 2q3 + q4 - q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {81, ...}

A2 (sl(3)) Invariant: q-6 + q-4 + 2q-2 + 1 - q4 - 2q6 - q8 - q10 + q14 + q16 + q18

HOMFLY-PT Polynomial: 3a-4 + 4a-4z2 + a-4z4 - 6a-2 - 11a-2z2 - 6a-2z4 - a-2z6 + 4 + 4z2 + z4

Kauffman Polynomial: - a-7z + 4a-6z2 - 5a-6z4 + a-6z6 - 6a-5z + 15a-5z3 - 11a-5z5 + 2a-5z7 + 3a-4 - 9a-4z2 + 16a-4z4 - 11a-4z6 + 2a-4z8 - 6a-3z + 11a-3z3 - a-3z5 - 4a-3z7 + a-3z9 + 6a-2 - 27a-2z2 + 37a-2z4 - 19a-2z6 + 3a-2z8 - a-1z - 4a-1z3 + 10a-1z5 - 6a-1z7 + a-1z9 + 4 - 14z2 + 16z4 - 7z6 + z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1170. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 13        1
j = 11         
j = 9      22 
j = 7     1   
j = 5    121  
j = 3   22    
j = 1   11    
j = -1 12      
j = -3         
j = -51        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 70]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 70]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[2, 8, 3, 7], 
 
>   X[9, 19, 10, 18], X[11, 21, 12, 20], X[13, 6, 14, 7], X[15, 22, 16, 1], 
 
>   X[17, 13, 18, 12], X[19, 11, 20, 10], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 70]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 9, -7, 3, -8, 11, -9, 5, -10, 
 
>   6, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 70]]
Out[5]=   
DTCode[4, 8, -14, 2, -18, -20, -6, -22, -12, -10, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 70]][t]
Out[6]=   
     -3   2    2            2    3
3 - t   + -- - - - 2 t + 2 t  - t
           2   t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 70]][z]
Out[7]=   
       2      4    6
1 - 3 z  - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 70]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 70]], KnotSignature[Knot[11, NonAlternating, 70]]}
Out[9]=   
{13, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 70]][q]
Out[10]=   
     -2   1            2      3    4    5    6
2 + q   - - - 2 q + 2 q  - 2 q  + q  - q  + q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[8, 1], Knot[11, NonAlternating, 70]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 70]][q]
Out[12]=   
     -6    -4   2     4      6    8    10    14    16    18
1 + q   + q   + -- - q  - 2 q  - q  - q   + q   + q   + q
                 2
                q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 70]][a, z]
Out[13]=   
                        2       2         4      4    6
    3    6       2   4 z    11 z     4   z    6 z    z
4 + -- - -- + 4 z  + ---- - ----- + z  + -- - ---- - --
     4    2            4      2           4     2     2
    a    a            a      a           a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 70]][a, z]
Out[14]=   
                                              2      2       2       3
    3    6    z    6 z   6 z   z       2   4 z    9 z    27 z    15 z
4 + -- + -- - -- - --- - --- - - - 14 z  + ---- - ---- - ----- + ----- + 
     4    2    7    5     3    a             6      4      2       5
    a    a    a    a     a                  a      a      a       a
 
        3      3              4       4       4       5    5       5
    11 z    4 z        4   5 z    16 z    37 z    11 z    z    10 z       6
>   ----- - ---- + 16 z  - ---- + ----- + ----- - ----- - -- + ----- - 7 z  + 
      3      a               6      4       2       5      3     a
     a                      a      a       a       a      a
 
     6       6       6      7      7      7           8      8    9    9
    z    11 z    19 z    2 z    4 z    6 z     8   2 z    3 z    z    z
>   -- - ----- - ----- + ---- - ---- - ---- + z  + ---- + ---- + -- + --
     6     4       2       5      3     a            4      2     3   a
    a     a       a       a      a                  a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 70]], Vassiliev[3][Knot[11, NonAlternating, 70]]}
Out[15]=   
{-3, -3}
In[16]:=
Kh[Knot[11, NonAlternating, 70]][q, t]
Out[16]=   
                                             3
       3    5     1      1      2     q   2 q       5      7      5  2
q + 2 q  + q  + ----- + ---- + ---- + - + ---- + 2 q  t + q  t + q  t  + 
                 5  4      3      2   t    t
                q  t    q t    q t
 
       9  2      9  3    13  4
>   2 q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n70
K11n69
K11n69
K11n71
K11n71