© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n6
K11n6
K11n8
K11n8
K11n7
Knotscape
This page is passe. Go here instead!

   The Knot K11n7

Visit K11n7's page at Knotilus!

Acknowledgement

K11n7 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X7,14,8,15 X2,9,3,10 X18,12,19,11 X13,6,14,7 X20,16,21,15 X12,18,13,17 X22,20,1,19 X16,22,17,21

Gauss Code: {1, -5, 2, -1, 3, 7, -4, -2, 5, -3, 6, -9, -7, 4, 8, -11, 9, -6, 10, -8, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 10 -14 2 18 -6 20 12 22 16

Alexander Polynomial: t-3 - 6t-2 + 16t-1 - 21 + 16t - 6t2 + t3

Conway Polynomial: 1 + z2 + z6

Other knots with the same Alexander/Conway Polynomial: {K11n131, K11n160, ...}

Determinant and Signature: {67, 2}

Jones Polynomial: q-3 - 3q-2 + 6q-1 - 9 + 11q - 11q2 + 11q3 - 8q4 + 5q5 - 2q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11n36, K11n44, ...}

A2 (sl(3)) Invariant: q-10 - q-6 + 2q-4 - 2q-2 + q2 - 2q4 + 3q6 - q8 + 3q10 + q12 - q14 + 2q16 - 2q18 - q20

HOMFLY-PT Polynomial: - a-6 + a-4 - a-4z4 + 2a-2 + 4a-2z2 + 3a-2z4 + a-2z6 - 2 - 4z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - 2a-7z + 3a-7z3 + a-6 - 3a-6z2 + 4a-6z4 + a-6z6 - 3a-5z + 5a-5z3 - 2a-5z5 + 3a-5z7 + a-4 - a-4z4 - a-4z6 + 3a-4z8 - 3a-3z + 11a-3z3 - 17a-3z5 + 7a-3z7 + a-3z9 - 2a-2 + 9a-2z2 - 9a-2z4 - 7a-2z6 + 6a-2z8 - 4a-1z + 17a-1z3 - 24a-1z5 + 7a-1z7 + a-1z9 - 2 + 9z2 - 7z4 - 4z6 + 3z8 - 2az + 8az3 - 9az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 117. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13         2
j = 11        3 
j = 9       52 
j = 7      63  
j = 5     55   
j = 3    66    
j = 1   46     
j = -1  25      
j = -3 14       
j = -5 2        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 7]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 7]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[7, 14, 8, 15], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[13, 6, 14, 7], X[20, 16, 21, 15], 
 
>   X[12, 18, 13, 17], X[22, 20, 1, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 7]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, 7, -4, -2, 5, -3, 6, -9, -7, 4, 8, -11, 9, -6, 10, 
 
>   -8, 11, -10]
In[5]:=
DTCode[Knot[11, NonAlternating, 7]]
Out[5]=   
DTCode[4, 8, 10, -14, 2, 18, -6, 20, 12, 22, 16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 7]][t]
Out[6]=   
       -3   6    16             2    3
-21 + t   - -- + -- + 16 t - 6 t  + t
             2   t
            t
In[7]:=
Conway[Knot[11, NonAlternating, 7]][z]
Out[7]=   
     2    6
1 + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 7], Knot[11, NonAlternating, 131], 
 
>   Knot[11, NonAlternating, 160]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 7]], KnotSignature[Knot[11, NonAlternating, 7]]}
Out[9]=   
{67, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 7]][q]
Out[10]=   
      -3   3    6              2       3      4      5      6
-9 + q   - -- + - + 11 q - 11 q  + 11 q  - 8 q  + 5 q  - 2 q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 7], Knot[11, NonAlternating, 36], 
 
>   Knot[11, NonAlternating, 44]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 7]][q]
Out[12]=   
 -10    -6   2    2     2      4      6    8      10    12    14      16
q    - q   + -- - -- + q  - 2 q  + 3 q  - q  + 3 q   + q   - q   + 2 q   - 
              4    2
             q    q
 
       18    20
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 7]][a, z]
Out[13]=   
                                     2                   4      4    6
      -6    -4   2     2      2   4 z     2  2      4   z    3 z    z
-2 - a   + a   + -- + a  - 4 z  + ---- + a  z  - 2 z  - -- + ---- + --
                  2                 2                    4     2     2
                 a                 a                    a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 7]][a, z]
Out[14]=   
                                                                     2      2
      -6    -4   2     2   2 z   3 z   3 z   4 z              2   3 z    9 z
-2 + a   + a   - -- - a  - --- - --- - --- - --- - 2 a z + 9 z  - ---- + ---- + 
                  2         7     5     3     a                     6      2
                 a         a     a     a                           a      a
 
                 3      3       3       3                      4    4      4
       2  2   3 z    5 z    11 z    17 z         3      4   4 z    z    9 z
>   3 a  z  + ---- + ---- + ----- + ----- + 8 a z  - 7 z  + ---- - -- - ---- - 
                7      5      3       a                       6     4     2
               a      a      a                               a     a     a
 
                 5       5       5                    6    6      6
       2  4   2 z    17 z    24 z         5      6   z    z    7 z     2  6
>   3 a  z  - ---- - ----- - ----- - 9 a z  - 4 z  + -- - -- - ---- + a  z  + 
                5      3       a                      6    4     2
               a      a                              a    a     a
 
       7      7      7                      8      8    9    9
    3 z    7 z    7 z         7      8   3 z    6 z    z    z
>   ---- + ---- + ---- + 3 a z  + 3 z  + ---- + ---- + -- + --
      5      3     a                       4      2     3   a
     a      a                             a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 7]], Vassiliev[3][Knot[11, NonAlternating, 7]]}
Out[15]=   
{1, 3}
In[16]:=
Kh[Knot[11, NonAlternating, 7]][q, t]
Out[16]=   
         3     1       2       1       4      2      5    4 q      3
6 q + 6 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 6 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   5 q  t + 5 q  t  + 6 q  t  + 3 q  t  + 5 q  t  + 2 q  t  + 3 q   t  + 
 
       13  5
>   2 q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n7
K11n6
K11n6
K11n8
K11n8