© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n59
K11n59
K11n61
K11n61
K11n60
Knotscape
This page is passe. Go here instead!

   The Knot K11n60

Visit K11n60's page at Knotilus!

Acknowledgement

K11n60 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,15,6,14 X2837 X9,17,10,16 X11,18,12,19 X13,20,14,21 X15,7,16,6 X17,1,18,22 X19,12,20,13 X21,10,22,11

Gauss Code: {1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 10, -7, 3, -8, 5, -9, 6, -10, 7, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 -16 -18 -20 -6 -22 -12 -10

Alexander Polynomial: - t-4 + 3t-3 - 4t-2 + 5t-1 - 5 + 5t - 4t2 + 3t3 - t4

Conway Polynomial: 1 - 6z4 - 5z6 - z8

Other knots with the same Alexander/Conway Polynomial: {1046, ...}

Determinant and Signature: {31, 2}

Jones Polynomial: q-3 - 2q-2 + 3q-1 - 4 + 5q - 5q2 + 5q3 - 3q4 + 2q5 - q6

Other knots (up to mirrors) with the same Jones Polynomial: {98, ...}

A2 (sl(3)) Invariant: q-8 + q-4 - 2q4 + q6 - q8 + 2q10 + q12 + q14 + q16 - q18 - q22

HOMFLY-PT Polynomial: - 2a-6 - a-6z2 + 6a-4 + 11a-4z2 + 6a-4z4 + a-4z6 - 6a-2 - 17a-2z2 - 17a-2z4 - 7a-2z6 - a-2z8 + 3 + 7z2 + 5z4 + z6

Kauffman Polynomial: - 2a-7z + a-7z3 + 2a-6 - 4a-6z2 + 2a-6z4 - 4a-5z + 8a-5z3 - 4a-5z5 + a-5z7 + 6a-4 - 19a-4z2 + 24a-4z4 - 11a-4z6 + 2a-4z8 - 4a-3z + 8a-3z3 - 3a-3z7 + a-3z9 + 6a-2 - 25a-2z2 + 35a-2z4 - 20a-2z6 + 4a-2z8 - 4a-1z + 8a-1z3 - 4a-1z5 - 2a-1z7 + a-1z9 + 3 - 7z2 + 9z4 - 8z6 + 2z8 - 2az + 7az3 - 8az5 + 2az7 + 3a2z2 - 4a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13         1
j = 11        1 
j = 9       21 
j = 7      31  
j = 5     22   
j = 3    33    
j = 1   23     
j = -1  12      
j = -3 12       
j = -5 1        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 60]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 60]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 15, 6, 14], X[2, 8, 3, 7], 
 
>   X[9, 17, 10, 16], X[11, 18, 12, 19], X[13, 20, 14, 21], X[15, 7, 16, 6], 
 
>   X[17, 1, 18, 22], X[19, 12, 20, 13], X[21, 10, 22, 11]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 60]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 10, -7, 3, -8, 5, -9, 6, -10, 
 
>   7, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 60]]
Out[5]=   
DTCode[4, 8, -14, 2, -16, -18, -20, -6, -22, -12, -10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 60]][t]
Out[6]=   
      -4   3    4    5            2      3    4
-5 - t   + -- - -- + - + 5 t - 4 t  + 3 t  - t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, NonAlternating, 60]][z]
Out[7]=   
       4      6    8
1 - 6 z  - 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 46], Knot[11, NonAlternating, 60]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 60]], KnotSignature[Knot[11, NonAlternating, 60]]}
Out[9]=   
{31, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 60]][q]
Out[10]=   
      -3   2    3            2      3      4      5    6
-4 + q   - -- + - + 5 q - 5 q  + 5 q  - 3 q  + 2 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[9, 8], Knot[11, NonAlternating, 60]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 60]][q]
Out[12]=   
 -8    -4      4    6    8      10    12    14    16    18    22
q   + q   - 2 q  + q  - q  + 2 q   + q   + q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 60]][a, z]
Out[13]=   
                           2       2       2             4       4         6
    2    6    6       2   z    11 z    17 z       4   6 z    17 z     6   z
3 - -- + -- - -- + 7 z  - -- + ----- - ----- + 5 z  + ---- - ----- + z  + -- - 
     6    4    2           6     4       2              4      2           4
    a    a    a           a     a       a              a      a           a
 
       6    8
    7 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 60]][a, z]
Out[14]=   
                                                             2       2
    2    6    6    2 z   4 z   4 z   4 z              2   4 z    19 z
3 + -- + -- + -- - --- - --- - --- - --- - 2 a z - 7 z  - ---- - ----- - 
     6    4    2    7     5     3     a                     6      4
    a    a    a    a     a     a                           a      a
 
        2              3      3      3      3                      4       4
    25 z       2  2   z    8 z    8 z    8 z         3      4   2 z    24 z
>   ----- + 3 a  z  + -- + ---- + ---- + ---- + 7 a z  + 9 z  + ---- + ----- + 
      2                7     5      3     a                       6      4
     a                a     a      a                             a      a
 
        4                5      5                       6       6
    35 z       2  4   4 z    4 z         5      6   11 z    20 z     2  6
>   ----- - 4 a  z  - ---- - ---- - 8 a z  - 8 z  - ----- - ----- + a  z  + 
      2                 5     a                       4       2
     a                 a                             a       a
 
     7      7      7                      8      8    9    9
    z    3 z    2 z         7      8   2 z    4 z    z    z
>   -- - ---- - ---- + 2 a z  + 2 z  + ---- + ---- + -- + --
     5     3     a                       4      2     3   a
    a     a                             a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 60]], Vassiliev[3][Knot[11, NonAlternating, 60]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 60]][q, t]
Out[16]=   
         3     1       1       1       2      1      2    2 q      3
3 q + 3 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 3 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2    7  3      9  3    9  4    11  4    13  5
>   2 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n60
K11n59
K11n59
K11n61
K11n61