© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n56
K11n56
K11n58
K11n58
K11n57
Knotscape
This page is passe. Go here instead!

   The Knot K11n57

Visit K11n57's page at Knotilus!

Acknowledgement

K11n57 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,15,6,14 X2837 X9,17,10,16 X11,19,12,18 X13,20,14,21 X15,7,16,6 X17,11,18,10 X19,1,20,22 X21,12,22,13

Gauss Code: {1, -4, 2, -1, -3, 8, 4, -2, -5, 9, -6, 11, -7, 3, -8, 5, -9, 6, -10, 7, -11, 10}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 -16 -18 -20 -6 -10 -22 -12

Alexander Polynomial: - t-4 + 3t-3 - 2t-2 - t-1 + 3 - t - 2t2 + 3t3 - t4

Conway Polynomial: 1 + 2z2 - 4z4 - 5z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {7, 6}

Jones Polynomial: q - q2 + 2q3 - q4 + q5 - q6

Other knots (up to mirrors) with the same Jones Polynomial: {52, ...}

A2 (sl(3)) Invariant: q4 + q6 + q8 + 2q10 + q12 - q16 - q18 - 2q20 + q26 + q32 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 4a-8 + 9a-8z2 + 6a-8z4 + a-8z6 - 7a-6 - 16a-6z2 - 16a-6z4 - 7a-6z6 - a-6z8 + 5a-4 + 10a-4z2 + 6a-4z4 + a-4z6

Kauffman Polynomial: - a-11z + a-10 - 2a-10z2 - 3a-9z + 8a-9z3 - 6a-9z5 + a-9z7 + 4a-8 - 16a-8z2 + 24a-8z4 - 13a-8z6 + 2a-8z8 - 5a-7z + 7a-7z3 + 3a-7z5 - 5a-7z7 + a-7z9 + 7a-6 - 29a-6z2 + 40a-6z4 - 20a-6z6 + 3a-6z8 - 3a-5z - a-5z3 + 9a-5z5 - 6a-5z7 + a-5z9 + 5a-4 - 15a-4z2 + 16a-4z4 - 7a-4z6 + a-4z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 1157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 17       11
j = 15      11 
j = 13     111 
j = 11    121  
j = 9   11    
j = 7  111    
j = 5 12      
j = 3         
j = 11        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 57]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 57]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 15, 6, 14], X[2, 8, 3, 7], 
 
>   X[9, 17, 10, 16], X[11, 19, 12, 18], X[13, 20, 14, 21], X[15, 7, 16, 6], 
 
>   X[17, 11, 18, 10], X[19, 1, 20, 22], X[21, 12, 22, 13]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 57]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 8, 4, -2, -5, 9, -6, 11, -7, 3, -8, 5, -9, 6, -10, 
 
>   7, -11, 10]
In[5]:=
DTCode[Knot[11, NonAlternating, 57]]
Out[5]=   
DTCode[4, 8, -14, 2, -16, -18, -20, -6, -10, -22, -12]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 57]][t]
Out[6]=   
     -4   3    2    1          2      3    4
3 - t   + -- - -- - - - t - 2 t  + 3 t  - t
           3    2   t
          t    t
In[7]:=
Conway[Knot[11, NonAlternating, 57]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  - 4 z  - 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 57]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 57]], KnotSignature[Knot[11, NonAlternating, 57]]}
Out[9]=   
{7, 6}
In[10]:=
J=Jones[Knot[11, NonAlternating, 57]][q]
Out[10]=   
     2      3    4    5    6
q - q  + 2 q  - q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[5, 2], Knot[11, NonAlternating, 57]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 57]][q]
Out[12]=   
 4    6    8      10    12    16    18      20    26    32    34
q  + q  + q  + 2 q   + q   - q   - q   - 2 q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 57]][a, z]
Out[13]=   
                        2       2       2       2      4       4      4    6
  -10   4    7    5    z     9 z    16 z    10 z    6 z    16 z    6 z    z
-a    + -- - -- + -- - --- + ---- - ----- + ----- + ---- - ----- + ---- + -- - 
         8    6    4    10     8      6       4       8      6       4     8
        a    a    a    a      a      a       a       a      a       a     a
 
       6    6    8
    7 z    z    z
>   ---- + -- - --
      6     4    6
     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 57]][a, z]
Out[14]=   
                                                 2       2       2       2
 -10   4    7    5     z    3 z   5 z   3 z   2 z    16 z    29 z    15 z
a    + -- + -- + -- - --- - --- - --- - --- - ---- - ----- - ----- - ----- + 
        8    6    4    11    9     7     5     10      8       6       4
       a    a    a    a     a     a     a     a       a       a       a
 
       3      3    3       4       4       4      5      5      5       6
    8 z    7 z    z    24 z    40 z    16 z    6 z    3 z    9 z    13 z
>   ---- + ---- - -- + ----- + ----- + ----- - ---- + ---- + ---- - ----- - 
      9      7     5     8       6       4       9      7      5      8
     a      a     a     a       a       a       a      a      a      a
 
        6      6    7      7      7      8      8    8    9    9
    20 z    7 z    z    5 z    6 z    2 z    3 z    z    z    z
>   ----- - ---- + -- - ---- - ---- + ---- + ---- + -- + -- + --
      6       4     9     7      5      8      6     4    7    5
     a       a     a     a      a      a      a     a    a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 57]], Vassiliev[3][Knot[11, NonAlternating, 57]]}
Out[15]=   
{2, 3}
In[16]:=
Kh[Knot[11, NonAlternating, 57]][q, t]
Out[16]=   
                  5
   5    7   q    q     7      9      7  2    9  2    11  2      11  3
2 q  + q  + -- + -- + q  t + q  t + q  t  + q  t  + q   t  + 2 q   t  + 
             2   t
            t
 
     13  3    11  4    13  4    15  4    13  5    15  5    17  5    17  6
>   q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n57
K11n56
K11n56
K11n58
K11n58