© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n54
K11n54
K11n56
K11n56
K11n55
Knotscape
This page is passe. Go here instead!

   The Knot K11n55

Visit K11n55's page at Knotilus!

Acknowledgement

K11n55 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,14,6,15 X2837 X16,10,17,9 X18,11,19,12 X13,6,14,7 X22,16,1,15 X20,17,21,18 X12,19,13,20 X10,22,11,21

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, -10, -7, 3, 8, -5, 9, -6, 10, -9, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 16 18 -6 22 20 12 10

Alexander Polynomial: - t-3 + 6t-2 - 14t-1 + 19 - 14t + 6t2 - t3

Conway Polynomial: 1 + z2 - z6

Other knots with the same Alexander/Conway Polynomial: {933, ...}

Determinant and Signature: {61, 0}

Jones Polynomial: - 2q-3 + 5q-2 - 7q-1 + 10 - 10q + 10q2 - 8q3 + 5q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - 2q-10 + q-6 - q-4 + 4q-2 + 1 + 2q2 + q4 - 2q6 + q8 - 3q10 + q14 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 4a-2 - 7a-2z2 - 4a-2z4 - a-2z6 + 6 + 8z2 + 3z4 - 2a2 - 2a2z2

Kauffman Polynomial: 2a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 9a-5z3 - 10a-5z5 + 3a-5z7 + a-4 + 2a-4z4 - 7a-4z6 + 3a-4z8 - 6a-3z + 19a-3z3 - 21a-3z5 + 5a-3z7 + a-3z9 + 4a-2 - 10a-2z2 + 12a-2z4 - 14a-2z6 + 6a-2z8 - 7a-1z + 15a-1z3 - 15a-1z5 + 5a-1z7 + a-1z9 + 6 - 13z2 + 11z4 - 5z6 + 3z8 - 5az + 8az3 - 4az5 + 3az7 + 2a2 - 5a2z2 + 4a2z4 + a2z6 - 2a3z + 3a3z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1155. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13         1
j = 11        2 
j = 9       31 
j = 7      52  
j = 5     53   
j = 3    55    
j = 1   55     
j = -1  36      
j = -3 24       
j = -5 3        
j = -72         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 55]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 55]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[2, 8, 3, 7], 
 
>   X[16, 10, 17, 9], X[18, 11, 19, 12], X[13, 6, 14, 7], X[22, 16, 1, 15], 
 
>   X[20, 17, 21, 18], X[12, 19, 13, 20], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 55]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, -10, -7, 3, 8, -5, 9, -6, 10, 
 
>   -9, 11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 55]]
Out[5]=   
DTCode[4, 8, -14, 2, 16, 18, -6, 22, 20, 12, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 55]][t]
Out[6]=   
      -3   6    14             2    3
19 - t   + -- - -- - 14 t + 6 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 55]][z]
Out[7]=   
     2    6
1 + z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[9, 33], Knot[11, NonAlternating, 55]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 55]], KnotSignature[Knot[11, NonAlternating, 55]]}
Out[9]=   
{61, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 55]][q]
Out[10]=   
     2    5    7              2      3      4      5    6
10 - -- + -- - - - 10 q + 10 q  - 8 q  + 5 q  - 3 q  + q
      3    2   q
     q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 55]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 55]][q]
Out[12]=   
     2     -6    -4   4       2    4      6    8      10    14    16    18
1 - --- + q   - q   + -- + 2 q  + q  - 2 q  + q  - 3 q   + q   - q   + q
     10                2
    q                 q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 55]][a, z]
Out[13]=   
                                2      2                     4      4    6
     -4   4       2      2   2 z    7 z       2  2      4   z    4 z    z
6 + a   - -- - 2 a  + 8 z  + ---- - ---- - 2 a  z  + 3 z  + -- - ---- - --
           2                   4      2                      4     2     2
          a                   a      a                      a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 55]][a, z]
Out[14]=   
                                                                    2       2
     -4   4       2   2 z   6 z   7 z              3         2   2 z    10 z
6 + a   + -- + 2 a  - --- - --- - --- - 5 a z - 2 a  z - 13 z  + ---- - ----- - 
           2           5     3     a                               6      2
          a           a     a                                     a      a
 
                 3       3       3                                 4      4
       2  2   9 z    19 z    15 z         3      3  3       4   3 z    2 z
>   5 a  z  + ---- + ----- + ----- + 8 a z  + 3 a  z  + 11 z  - ---- + ---- + 
                5      3       a                                  6      4
               a      a                                          a      a
 
        4                 5       5       5                    6      6
    12 z       2  4   10 z    21 z    15 z         5      6   z    7 z
>   ----- + 4 a  z  - ----- - ----- - ----- - 4 a z  - 5 z  + -- - ---- - 
      2                 5       3       a                      6     4
     a                 a       a                              a     a
 
        6              7      7      7                      8      8    9    9
    14 z     2  6   3 z    5 z    5 z         7      8   3 z    6 z    z    z
>   ----- + a  z  + ---- + ---- + ---- + 3 a z  + 3 z  + ---- + ---- + -- + --
      2               5      3     a                       4      2     3   a
     a               a      a                             a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 55]], Vassiliev[3][Knot[11, NonAlternating, 55]]}
Out[15]=   
{1, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 55]][q, t]
Out[16]=   
6           2       3       2      4      3               3        3  2
- + 5 q + ----- + ----- + ----- + ---- + --- + 5 q t + 5 q  t + 5 q  t  + 
q          7  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t
 
       5  2      5  3      7  3      7  4      9  4    9  5      11  5    13  6
>   5 q  t  + 3 q  t  + 5 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n55
K11n54
K11n54
K11n56
K11n56